K-means clustering for gene expression data

Description

This function is a wrapper function for kmeans of the e1071 package. It performs hard clustering of genes based on their expression values using the k-means algorithm.

Usage

1
kmeans2(eset,k,iter.max=100)

Arguments

eset

object of the class ExpressionSet.

k

number of clusters.

iter.max

maximal number of iterations.

Value

An list of clustering components (see kmeans).

Author(s)

Matthias E. Futschik (http://itb.biologie.hu-berlin.de/~futschik)

See Also

kmeans

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
if (interactive()){
data(yeast)
# Data pre-processing
yeastF <- filter.NA(yeast)
yeastF <- fill.NA(yeastF)
yeastF <- standardise(yeastF)

# K-means clustering and visualisation
kl <- kmeans2(yeastF,k=20)
kmeans2.plot(yeastF,kl=kl,mfrow=c(2,2))
}

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.