Nothing
inferApparentStabilities <- function(data_2D, dataRef, refIDVar, refFcStr){
## Initialize variables to prevent "no visible binding for global
## variable" NOTE by R CMD check:
tppRefData = uniqueID = temperature = relConc = x = fc =
splinePrediction <- NULL
message("Normalizing data by TR-reference...")
# Obtain settings used for data import (stored as attribute of imported data):
importSettings <- attr(data_2D, "importSettings")
idVar <- checkAndReturnDataSetting(importSettings, "proteinIdCol", colnames(data_2D))
# Choose correct fold change column prefix (automatically detects whether
# to use the prefix for normalized columns).
finalFcPrefix <- obtain_fcStr_from_df_annotation(dat = data_2D)
# Load TPP-TR reference data
if (is.character(dataRef)){
if (file.exists(dataRef)){
load(dataRef)
dataRef <- tppRefData
} else {
stop("Reference data file ", dataRef, " could not be found.")
}
}
## Check if reference data is a list produced by the function
## tpp2dTRReferenceObject, or already in a tidy format
if (is.list(dataRef)){
dataRef <- tidyUpReferenceObject(refDatList = dataRef,
refFcColName = refFcStr,
refIdColName = refIDVar)
}
# Fit smoothing spline for each protein and evaluate at temperature points
# of current 2D-TPP data.
# This provides normalization coefficients for each protein and temperature.
newTemperatures <- as.numeric(as.character(unique(data_2D$temperature)))
model = as.formula("y ~ ns(x, df = 4)")
normTable <- dataRef %>%
group_by(uniqueID) %>%
rename(x = temperature, y = relConc) %>%
do(fit_and_eval_spline_model(., xNew = newTemperatures, modelFormula = model)) %>%
rename(temperature = x) %>%
ungroup
# to do: re-introduce the following checks and error messages:
# if (length(which(!is.na(protData_reference)))<10){ # check only FC columns instead of all columns?
# if (verbose){
# message(paste("The TR reference dataset does not supply enough data points for",
# protID, sep=" "))
# }
# return(NULL)
# }else if (!is.null(protData_2D) && nrow(protData_2D)>4){
# Convert 2D-TPP data to be analyzed from wide to long table
tppData_long <- convert_2dData_wide_to_long(datWide = data_2D,
idColname = idVar,
fcStr = finalFcPrefix)
# Normalization to reference:
tppData_long_normalized <- tppData_long %>%
left_join(normTable %>% mutate(uniqueID = as.character(uniqueID)),
by = c("uniqueID", "temperature")) %>%
mutate(fcNormalized = fc * splinePrediction)
message("Done.")
return(list(normResult = tppData_long_normalized, referenceDataUsed = dataRef))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.