Nothing
#' @title Plot dose response curves
#' @description \code{tppccrPlotCurves} plots the logistic dose response curves,
#' as well as the underlying fold
#' change measurements for each TPP-CCR experiment in a study.
#' @param data list of expressionSet objects containing protein fold changes, as
#' well as fitted curve parameters.
#' @param fcTable optional long table with fold changes for each experiment.
#' Can be provided instead of the input argument \code{data}.
#' @param curvePars optional long table of curve parameters per protein and
#' experiment. Can be provided instead of the input argument \code{data}.
#' @param resultPath location where to store dose-response curve plots.
#' @param ggplotTheme ggplot theme for dose response curve plots.
#' @param nCores either a numerical value given the desired number of CPUs, or
#' 'max' to automatically assign the maximum possible number (default).
#' @param verbose print name of each plotted protein to the command line as a
#' means of progress report.
#'
#' @details \code{data} is a list of expressionSet objects created by
#' \code{\link{tppccrCurveFit}}. It contains
#' the isobaric labels and administered drug concentrations in the
#' \code{phenoData} and user-defined protein properties (including dose response
#' curve parameters) in the \code{featureData}. Protein IDs are stored in the
#' \code{featureNames}.
#'
#' Measurements and compound effects for curve fitting can be provided
#' by the arguments \code{fcTable} and \code{cpdEffects}, instead of being
#' stored in expressionSets in \code{data}.
#'
#' If specified, \code{fcTable} needs to be a long
#' table with column names "id" (the protein names), "concentration" (the fold
#' changes), "labelName" (the isobaric label to each measurement), and
#' "experiment" (e.g. "Vehicle_1" or "Panobinostat_1").
#'
#' If specified, \code{curvePars} needs to be a long
#' table with column names "id" (the protein names), "param" (curve parameter
#' per protein and experiment, see TPP:::drCurveParamNames(names=TRUE,
#' info=FALSE) for possibilities), and
#' "experiment" (e.g. "Vehicle_1" or "Panobinostat_1").
#'
#' The dose response curve plots will be stored in a subfolder with name
#' \code{DoseResponse_Curves} at the location specified by \code{resultPath}.
#'
#' @return A list of expressionSet objects storing fold changes,
#' as well as row and column metadata. In each expressionSet \code{S}, the fold
#' changes
#' can be accessed by \code{Biobase::exprs(S)}. Protein expNames can be accessed by
#' \code{featureNames(S)}. Isobaric labels and the corresponding
#' concentrations are
#' returned by \code{S$label} and \code{S$concentration}. Paths to the
#' produced plots are stored in code{featureData(S)$plot}.
#'
#' @examples
#' data(hdacCCR_smallExample)
#' tppccrData <- tppccrImport(configTable=hdacCCR_config,
#' data=hdacCCR_data)
#' tppccrNorm <- tppccrNormalize(data=tppccrData)
#' tppccrTransformed <- tppccrTransform(data=tppccrNorm)
#' tppccrFitted <- tppccrCurveFit(data=tppccrTransformed, nCores=1)
#' hdacSubset <- sapply(tppccrFitted, function(d)d[grepl("HDAC", rownames(d)),])
#' tppccrPlotted <- tppccrPlotCurves(hdacSubset, resultPath=getwd(), nCores = 1)
#'
#' @seealso \code{\link{tppccrCurveFit}},\code{\link{tppDefaultTheme}}
#'
#' @export
tppccrPlotCurves <- function(data=NULL, fcTable=NULL, curvePars=NULL,
resultPath=NULL, ggplotTheme=tppDefaultTheme(),
nCores="max", verbose=FALSE){
## Initialize variables to prevent "no visible binding for global
## variable" NOTE by R CMD check:
variable = foldChange = pID <- NULL
## 1. Check if output directory exists already. If not, create it here.
plotDir <- "DoseResponse_Curves"
if (!file.exists(file.path(resultPath, plotDir))) {
dir.create(file.path(resultPath, plotDir), recursive=TRUE)
}
## 2. Define plot theme:
theme_set(ggplotTheme)
## 3. Obtain long tables with fold changes and curve parameters
if (!is.null(data)){
isESetList <- ifelse (is.list(data)&identical(unique(sapply(data, class)),
"ExpressionSet"), TRUE, FALSE)
if (isESetList) {
fcTable <- eSetsToLongTable_fc(data)
colnames(fcTable)[grep("labelValue",colnames(fcTable))] <- "concentration"
fDatTable <- eSetsToLongTable_fData(data)
parNames <- drCurveParamNames(names = TRUE, info = FALSE)
curvePars <- subset(fDatTable, variable %in% parNames)
curvePars$value <- as.numeric(curvePars$value)
colnames(curvePars)[grep("variable", colnames(curvePars))] <- "param"
}
} else if (is.null(fcTable) | is.null(curvePars)) {
stop("Please specify either 'data', or both 'fcTable' and 'curvePars'.")
}
## 2. Ignore proteins with NA fold changes only
idsValid <- fcTable %>% select(id, foldChange) %>% na.omit %>%
extract2("id") %>% unique %>% as.character
fcFiltered <- subset(fcTable, id %in% idsValid) %>%
mutate(id = factor(as.character(id)))
## 3. Start parallelized DR plotting over all proteins:
fcSplit <- split(fcFiltered, fcFiltered$id)
parSplit <- split(curvePars, curvePars$id)
expNames <- unique(fcFiltered$experiment)
message("Plotting dose response curves for ", length(fcSplit), " proteins.")
## Determine operating system to decide whether legends should be added (on
## Mac OS, legends interfere with parallelization due to a bug in one of the
## involved packages):
addLegend <- checkIfLegendPossible()
## Determine plot colors:
plotCols <- plotColors(expConditions=c(NA,NA), comparisonNums=c(NA,NA))
nCores <- checkCPUs(cpus=nCores)
t1 <- Sys.time()
if (nCores == 1){
plotFileNames <- foreach(pID=names(fcSplit), .combine=rbind, .inorder=FALSE,
.verbose=FALSE) %do% {
fcDF = fcSplit[[pID]]
parDF = parSplit[[pID]]
plotDRCurve(protID = pID,
fcDF = fcDF,
parDF = parDF,
plotDir = file.path(resultPath,
plotDir),
allExp = expNames,
addLegend = addLegend,
plotCols = plotCols,
verbose = verbose)
}
} else if (nCores > 1){
doParallel::registerDoParallel(cores=nCores)
plotFileNames <- foreach(pID=names(fcSplit), .combine=rbind, .inorder=FALSE,
.verbose=FALSE) %dopar% {
fcDF = fcSplit[[pID]]
parDF = parSplit[[pID]]
plotDRCurve(protID = pID,
fcDF = fcDF,
parDF = parDF,
plotDir = file.path(resultPath,
plotDir),
allExp = expNames,
addLegend = addLegend,
plotCols = plotCols,
verbose = verbose)
}
stopImplicitCluster()
}
timeDiff <- Sys.time()-t1
message("Runtime (", nCores, " CPUs used): ", round(timeDiff, 2), " ",
units(timeDiff), "\n")
gc(verbose=FALSE)
message("Dose response curves plotted sucessfully!")
## Store plot paths in the featureData of each expressionSet:
plotFileNames$path <- file.path(plotDir, plotFileNames$path)
if (!is.null(data)){
for (e in expNames){
datTmp <- data[[e]]
plotDF <- join(data.frame("Protein_ID"=featureNames(datTmp)),
plotFileNames,
by="Protein_ID")
featureData(data[[e]])$plot <- as.character(plotDF$path)
}
return(data)
} else {
return(plotFileNames)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.