Nothing
# Prepare function input:
data(hdacTR_smallExample)
dat <- hdacTR_data %>% purrr::map(. %>% filter(grepl("HDAC", gene_name)))
cfg <- hdacTR_config
## ------------------------------------------------------------------------- ##
## function 'analyzeTPPTR' with option 'methods = splinefit':
## ------------------------------------------------------------------------- ##
test_that(desc="NPARC_allok", code={
# Start analysis
cfgIn <- cfg
datIn <- hdacTR_data
tpptrResults <- analyzeTPPTR(configTable = cfgIn, data = datIn, normalize = TRUE,
methods = "splinefit", nCores = 1, splineDF = c(3,7))
# Are still the expected results produced?
cols <- colnames(tpptrResults)
colsExpected <- c("F_statistic", "F_moderated", "F_scaled", "residual_df_H1",
"prior_df_H1", "df1", "df2", "df2_moderated",
"posterior_var_H1", "p_NPARC", "p_adj_NPARC")
expect_equal(sort(filter(tpptrResults, p_adj_NPARC <= 0.01)$Protein_ID),
c("COPS3", "DNLZ", "HDAC1", "HDAC10", "HDAC2", "HDAC6", "HDAC8", "PSMB5", "STX4", "YBX3"))
expect_true(all(colsExpected %in% cols))
expect_equal(nrow(tpptrResults), 510)
})
test_that(desc="NPARC_allok_output", code={
# Start analysis
cfgIn <- cfg
datIn <- dat
dirOut <- file.path(getwd(), "TR_results")
tpptrResults <- analyzeTPPTR(configTable = cfgIn, data = datIn, resultPath = dirOut,
plotCurves = FALSE, normalize = FALSE,
methods = "splinefit", nCores = 1, splineDF = 3)
# Are still the expected results produced?
cols <- colnames(tpptrResults)
check1 <- all(sort(filter(tpptrResults, p_adj_NPARC <= 0.01)$Protein_ID) ==
c("HDAC1", "HDAC10", "HDAC2", "HDAC6", "HDAC8"))
check2 <- !any("plot" %in% cols)
check3 <- all.equal(round(tpptrResults$p_adj_NPARC, 10),
c(0.0000000000, 0.0000000651, 0.0000000016, 0.5654779288,
0.2918881921, 0.9328006686, 0.0000031269, 0.1471673324,
0.0006474845, NA))
check4 <- file.exists(dirOut)
unlink(dirOut, recursive = TRUE)
expect_true(check1 & check2 & check3 & check4)
})
test_that(desc="NPARC_plot_splines", code={
# Start analysis
cfgIn <- cfg
datIn <- dat
dirOut <- file.path(getwd(), "TR_results")
tpptrResults <- analyzeTPPTR(configTable = cfgIn, data = datIn,
normalize = FALSE, resultPath = dirOut,
nCores = 1, splineDF = 3,
methods = "splinefit")
# Are still the expected results produced?
cols <- colnames(tpptrResults)
check1 <- all(sort(filter(tpptrResults, p_adj_NPARC <= 0.01)$Protein_ID) ==
c("HDAC1", "HDAC10", "HDAC2", "HDAC6", "HDAC8"))
check2 <- all(c("splinefit_plot") %in% cols)
check3 <- all.equal(round(tpptrResults$p_adj_NPARC, 10),
c(0.0000000000, 0.0000000651, 0.0000000016, 0.5654779288,
0.2918881921, 0.9328006686, 0.0000031269, 0.1471673324,
0.0006474845, NA))
check4 <- tpptrResults$splinefit_plot %>% file.path(dirOut, .) %>% file.exists %>% all
unlink(dirOut, recursive = TRUE)
expect_true(check1 & check2 & check3 & check4)
})
test_that(desc="NPARC_plot_sigmoids_and_splines", code={
# Start analysis
cfgIn <- cfg
datIn <- dat
dirOut <- file.path(getwd(), "TR_results")
expect_warning(
tpptrResults <- analyzeTPPTR(configTable = cfgIn, data = datIn,
normalize = FALSE, resultPath = dirOut,
nCores = 1, splineDF = 3)
)
# Are still the expected results produced?
cols <- colnames(tpptrResults)
check1 <- all(sort(filter(tpptrResults, p_adj_NPARC <= 0.01)$Protein_ID) ==
c("HDAC1", "HDAC10", "HDAC2", "HDAC6", "HDAC8"))
check2 <- all(c("meltcurve_plot", "splinefit_plot") %in% cols)
check3 <- all.equal(round(tpptrResults$p_adj_NPARC, 10),
c(0.0000000000, 0.0000000651, 0.0000000016, 0.5654779288,
0.2918881921, 0.9328006686, 0.0000031269, 0.1471673324,
0.0006474845, NA))
check4 <- c(tpptrResults$splinefit_plot, tpptrResults$meltcurve_plot) %>% file.path(dirOut, .) %>% file.exists %>% all
unlink(dirOut, recursive = TRUE)
expect_true(check1 & check2 & check3 & check4)
})
test_that(desc="NPARC_allok_files", code={
dirIn <- system.file("example_data", package="TPP") %>% file.path("TR_example_data")
files <- c("panobinostat_1_merged_results_20150226_1013_proteins.txt",
"panobinostat_2_merged_results_20150226_1139_proteins.txt",
"vehicle_1_merged_results_20150227_0908_proteins.txt",
"vehicle_2_merged_results_20150227_0847_proteins.txt")
cfgIn <- openxlsx::read.xlsx(
file.path(dirIn,"Panobinostat_TPP-TR_config.xlsx")) %>%
mutate(Path = file.path(dirIn, files))
tpptrResults <- analyzeTPPTR(configTable = cfgIn, plotCurves = FALSE,
methods = "splinefit", nCores = 1, splineDF = 5)
# Are still the expected results produced?
cols <- colnames(tpptrResults)
colsExpected <- c("F_statistic", "F_moderated", "F_scaled", "residual_df_H1",
"prior_df_H1", "df1", "df2", "df2_moderated",
"posterior_var_H1", "p_NPARC", "p_adj_NPARC")
topHits <- filter(tpptrResults, p_adj_NPARC <= 1e-5) %>%
arrange(p_adj_NPARC) %>% extract2("Protein_ID")
hitsExpected <- c("HDAC1", "CHCHD4", "TTC38", "HDAC2", "HDAC6",
"HDAC10", "H2AFV|H2AFZ", "GC", "STX4")
check1 <- any(grepl("TPP_results", dir(dirIn)))
check2 <- all(colsExpected %in% cols)
check3 <- nrow(tpptrResults) == 6004
check4 <- all(topHits == hitsExpected)
unlink(file.path(dirIn, grep("TPP_results", dir(dirIn), value = TRUE)), recursive = TRUE)
expect_true(check1 & check2 & check3 & check4)
})
# test_that(desc="analyzeTPPTR_9TMTlabels", code={
# # Remove lowest temperature from config and data tables:
# cfgIn <- hdacTR_config %>% mutate("131L" = NULL)
# datIn <- hdacTR_data %>% purrr::map(function(d) {d$rel_fc_131L <- NULL; return(d)})
# # Start analysis
# tpptrResults <- analyzeTPPTR(configTable = cfgIn, data = datIn,
# normalize = FALSE, # under default settings, normalization requires 10 fold changes
# methods = c("meltcurvefit", "splinefit"), nCores = 1)
# # View hits:
# filter(tpptrResults, fulfills_all_4_requirements)$Protein_ID # melting curve results
# filter(tpptrResults, p_adj_NPARC <= 0.01)$Protein_ID # smoothing spline results
#
# })
test_that(desc="analyzeTPPTR_9TMTlabels", code={
cfgIn <- cfg %>% mutate("131L" = NULL)
datIn <- dat %>% purrr::map(function(d) {d$rel_fc_131L <- NULL; return(d)})
# expect error because default filter criteria try to access the 10th column
# when not adjusted by the user.
expect_error(analyzeTPPTR(configTable = cfgIn, data = datIn,
methods = "meltcurve", nCores = 1))
})
test_that(desc="meltCurves_allOK_no_conditions", code={
# Start analysis
cfgIn <- cfg %>% select(-Condition)
datIn <- dat
expect_warning(
tpptrResults <- analyzeTPPTR(configTable = cfgIn, data = datIn, normalize = FALSE,
methods = "meltcurvefit", nCores = 1)
)
# Are still the expected results produced?
cols <- colnames(tpptrResults)
compCols <- c("Panobinostat_1_vs_Vehicle_1", "Panobinostat_2_vs_Vehicle_2")
check1 <- sum(c(grepl(compCols[1], cols), grepl(compCols[2], cols))) == 8
check2 <- identical(round(tpptrResults$pVal_adj_Panobinostat_1_vs_Vehicle_1, 2),
c(0.37, 0.94, 0.56, 0.56,0.56, NA, 0.94, 0.37, 0.94, NA))
check3 <- nrow(tpptrResults) == 10
expect_true(check1 & check2 & check3)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.