Nothing
# Prepare function input:
data(hdacTR_smallExample)
tpptrData <- suppressMessages(
tpptrImport(configTable = hdacTR_config, data = hdacTR_data)
)
testData <- tpptrTidyUpESets(tpptrData, returnType = "exprs") %>%
filter(uniqueID %in% c("HDAC1", "HDAC2", "HDAC9", "CBR3"))
splineFits1 <- suppressMessages(
tpptrFitSplines(data = testData, factorsH1 = c("condition"),
returnModels = TRUE, splineDF = 2, nCores = 1)
)
splineFits2 <- suppressMessages(
tpptrFitSplines(data = testData, factorsH1 = c("condition", "replicate"),
returnModels = TRUE, splineDF = 2, nCores = 1)
)
splineFits3 <- suppressMessages(
tpptrFitSplines(data = testData, factorsH1 = c("condition", "replicate"),
factorsH0 = c("replicate"),
returnModels = TRUE, splineDF = 2, nCores = 1)
)
xNew <- seq(40, 70, by = 2)
splinePredictions1 <- TPP:::invoke_spline_prediction(fits = splineFits1,
x = xNew)
splinePredictions2 <- TPP:::invoke_spline_prediction(fits = splineFits2,
x = xNew)
splinePredictions3 <- TPP:::invoke_spline_prediction(fits = splineFits3,
x = xNew)
colorBy1 <- data.frame(testHypothesis = c("alternative"),
factors = c("condition"))
colorBy2 <- data.frame(testHypothesis = c("alternative", "alternative"),
factors = c("condition", "replicate"))
colorBy3 <- data.frame(testHypothesis = c("null", "alternative", "alternative"),
factors = c("condition", "condition", "replicate"))
test_that(desc="allOk1", code={
datIn <- testData
predIn <- splinePredictions1
fctrsIn <- colorBy1
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
check3 <- all(na.omit(unique(ggplot2::ggplot_build(outPlot)$data[[2]]$colour)) ==
c( "black" , "#808080", "#da7f2d"))
expect_true(check1 & check2 & check3)
})
test_that(desc="allOk2", code={
datIn <- testData
predIn <- splinePredictions2
fctrsIn <- colorBy2
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
check3 <- all(na.omit(unique(ggplot2::ggplot_build(outPlot)$data[[2]]$colour)) ==
c("black" , "#1B9E77", "#9B58A5", "#BBA90B", "#666666"))
expect_true(check1 & check2 & check3)
})
test_that(desc="allOk3", code={
datIn <- testData
predIn <- splinePredictions3
fctrsIn <- colorBy3
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
# check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
# check3 <- all(na.omit(unique(ggplot2::ggplot_build(outPlot)$data[[2]]$colour)) ==
# c("black", "#1B9E77", "#B16548", "#D03792", "#7FA718", "#BF8B12", "#666666"))
expect_true(check1) # & check2 & check3
})
test_that(desc="sevenConditions", code={
datIn <- testData %>%
filter(uniqueID != "CBR3") %>%
mutate(condition = paste0(condition, as.numeric(uniqueID)),
uniqueID = "HDAC1")
fitsNew <- suppressMessages(
tpptrFitSplines(data = datIn, factorsH1 = "condition", returnModels = TRUE,
splineDF = 2, nCores = 1)
)
fctrsIn <- colorBy1
predIn <- TPP:::invoke_spline_prediction(fits = fitsNew, x = xNew)
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
check2 <- length(unique(ggplot2::ggplot_build(outPlot)$data[[2]]$colour)) == 6
expect_true(check1 & check2)
})
test_that(desc="onlyAlternative", code={
datIn <- testData
fitsNew <- splineFits1 %>% filter(testHypothesis == "alternative")
fctrsIn <- colorBy1
predIn <- TPP:::invoke_spline_prediction(fits = fitsNew, x = xNew)
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
check3 <- all(na.omit(unique(ggplot2::ggplot_build(outPlot)$data[[2]]$colour)) ==
c("#808080", "#da7f2d"))
expect_true(check1 & check2 & check3)
})
test_that(desc="onlyNull", code={
datIn <- testData
fitsNew <- splineFits3 %>% filter(testHypothesis == "null")
fctrsIn <- colorBy3
predIn <- TPP:::invoke_spline_prediction(fits = fitsNew, x = xNew)
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
#check3 <- length(unique(ggplot2::ggplot_build(outPlot)$data[[2]]$colour)) == 2 # to do: remove the generic 'black' color
check4 <- length(outPlot$layers) == 2
expect_true(check1 & check2 & check4)
})
test_that(desc="noHypothesisNorCondition", code={
datIn <- testData
fitsNew <- splineFits2 %>% filter(testHypothesis == "null") %>%
mutate(testHypothesis = "dummy")
fctrsIn <- colorBy2
predIn <- TPP:::invoke_spline_prediction(fits = fitsNew, x = xNew)
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
check3 <- length(outPlot$layers) == 2
expect_true(check1 & check2 & check3)
})
test_that(desc="predictionsMissing", code={
datIn <- testData
fctrsIn <- colorBy1
expect_error(
TPP:::create_spline_plots(measurements = datIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
)
})
test_that(desc="measurementsMissing", code={
predIn <- splinePredictions1
fctrsIn <- colorBy1
expect_error(
TPP:::create_spline_plots(predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
)
})
test_that(desc="factorsMissing", code={
datIn <- testData
predIn <- splinePredictions1
expect_error(
TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
highlightIDs = c(),
highlightTxt = "")
)
})
test_that(desc="idColsMissingMeasurements", code={
datIn <- testData %>% select(-uniqueID)
predIn <- splinePredictions1
fctrsIn <- colorBy1
expect_error(
TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
)
})
test_that(desc="idColsMissingPredictions", code={
datIn <- testData
predIn <- splinePredictions1 %>% select(-uniqueID)
fctrsIn <- colorBy1
expect_error(
TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
)
})
test_that(desc="noData", code={
datIn <- testData %>% filter(uniqueID == "CBR3")
predIn <- splinePredictions1 %>% filter(uniqueID == "CBR3")
fctrsIn <- colorBy1
outPlot <- TPP:::create_spline_plots(measurements = datIn,
predictions = predIn,
colorBy = fctrsIn,
highlightIDs = c(),
highlightTxt = "")
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
# Check if only the original data was added, not the failed predictions.
# Adding these would cause problems due to the missing color columns,
# which is only added automatically when at least 1 successfull model fit was present:
check3 <- length(outPlot$layers) == 1
expect_true(check1 & check2 & check3)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.