Description Usage Arguments Value See Also Examples
Perform differential gene expression based on ENCODE data
1 |
counts |
Data frame: gene expression |
Data frame with differential gene expression results between knockdown and control
Other functions related with using ENCODE expression data:
downloadENCODEknockdownMetadata()
,
loadENCODEsamples()
,
prepareENCODEgeneExpression()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | if (interactive()) {
# Download ENCODE metadata for a specific cell line and gene
cellLine <- "HepG2"
gene <- "EIF4G1"
ENCODEmetadata <- downloadENCODEknockdownMetadata(cellLine, gene)
# Download samples based on filtered ENCODE metadata
ENCODEsamples <- loadENCODEsamples(ENCODEmetadata)[[1]]
counts <- prepareENCODEgeneExpression(ENCODEsamples)
# Remove low coverage (at least 10 counts shared across two samples)
minReads <- 10
minSamples <- 2
filter <- rowSums(counts[ , -c(1, 2)] >= minReads) >= minSamples
counts <- counts[filter, ]
# Convert ENSEMBL identifier to gene symbol
counts$gene_id <- convertENSEMBLtoGeneSymbols(counts$gene_id)
# Perform differential gene expression analysis
diffExpr <- performDifferentialExpression(counts)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.