Description Usage Arguments Value Examples
View source: R/helper_functions.R
This function takes a GRanges object as produced by
compileCopyCountSegments
and plots the CNV segments for
one sequence/chromosomes across the samples with CNV segments.
The segments in the normal state should be removed as shown below in the example to produce a cleaned GRanges object. See the vignette for a more complete example.
1 2 | plotCompiledCNV(CNV.segments, seq.name, xlim=NULL, col=NULL,
copy.counts=0:6, normal.state = 2)
|
CNV.segments |
A GRanges object as produced by
|
seq.name |
The name of the sequence to plot |
xlim |
The genomic coordinates for the x axis. If not included, the
plotting window will cover the range of the CNVs in |
col |
The colors to use for the different copy count states |
copy.counts |
The corresponding copy counts for the colors |
normal.state |
The copy count of the normal state |
Produces a plot.
1 2 3 4 5 | example(compileCopyCountSegments)
CNV.clean <- CNV.segments[CNV.segments$copy.count != 2]
chr.start <- start(range(fit@ranges))
chr.end <- end(range(fit@ranges))
plotCompiledCNV(CNV.clean, "chr1", xlim=c(chr.start,chr.end))
|
Loading required package: IRanges
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: ‘BiocGenerics’
The following objects are masked from ‘package:parallel’:
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from ‘package:stats’:
IQR, mad, sd, var, xtabs
The following objects are masked from ‘package:base’:
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Loading required package: stats4
Attaching package: ‘S4Vectors’
The following object is masked from ‘package:base’:
expand.grid
Loading required package: GenomicRanges
Loading required package: GenomeInfoDb
Loading required package: Rsamtools
Loading required package: Biostrings
Loading required package: XVector
Attaching package: ‘Biostrings’
The following object is masked from ‘package:base’:
strsplit
cmpCCS> example(exomeCopy)
exmCpy> ## The following is an example of running exomeCopy on simulated
exmCpy> ## read counts using the model parameters defined above. For an example
exmCpy> ## using real exome sequencing read counts (with simulated CNV) please
exmCpy> ## see the vignette.
exmCpy>
exmCpy> ## create GRanges for storing genomic ranges and covariate data
exmCpy> ## (background, background stdev, GC-content)
exmCpy>
exmCpy> m <- 5000
exmCpy> gr <- GRanges("chr1", IRanges(start=0:(m-1)*100+1,width=100),
exmCpy+ log.bg=rnorm(m), log.bg.var=rnorm(m), gc=runif(m,30,50))
exmCpy> genome(gr) <- "hg19"
exmCpy> ## create read depth distributional parameters mu and phi
exmCpy> gr$gc.sq <- gr$gc^2
exmCpy> X <- cbind(bg=gr$log.bg,gc=gr$gc,gc.sq=gr$gc.sq)
exmCpy> Y <- cbind(bg.sd=gr$log.bg.var)
exmCpy> beta <- c(5,1,.01,-.01)
exmCpy> gamma <- c(-3,.1)
exmCpy> gr$mu <- exp(beta[1] + scale(X) %*% beta[2:4])
exmCpy> gr$phi <- exp(gamma[1] + scale(Y) %*% gamma[2])
exmCpy> ## create observed counts with simulated heterozygous duplication
exmCpy> cnv.nranges <- 200
exmCpy> bounds <- (round(m/2)+1):(round(m/2)+cnv.nranges)
exmCpy> O <- rnbinom(length(gr),mu=gr$mu,size=1/gr$phi)
exmCpy> O[bounds] <- O[bounds] + rbinom(cnv.nranges,prob=0.5,size=O[bounds])
exmCpy> gr$sample1 <- O
exmCpy> ## run exomeCopy() and list segments
exmCpy> fit <- exomeCopy(gr,"sample1",X.names=c("log.bg","gc","gc.sq"))
exmCpy> # an example call with variance fitting.
exmCpy> # see paper: this does not necessarily improve the fit
exmCpy> fit <- exomeCopy(gr,"sample1",X.names=c("log.bg","gc","gc.sq"),
exmCpy+ Y.names="log.bg",fit.var=TRUE)
exmCpy> ## see man page for copyCountSegments() for summary of
exmCpy> ## the predicted segments of constant copy count, and
exmCpy> ## for plot.ExomeCopy() for plotting fitted objects
exmCpy>
exmCpy>
exmCpy>
exmCpy>
cmpCCS> # this function requires a named list of named lists
cmpCCS> # as constructed in the vignette
cmpCCS> fit.list <- list(sample1 = list(chr1 = fit))
cmpCCS> CNV.segments <- compileCopyCountSegments(fit.list)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.