Nothing
# CONTRASTS
contrasts.fit <- function(fit,contrasts=NULL,coefficients=NULL)
# Convert coefficients and std deviations in fit object to reflect contrasts of interest
# Note: does not completely take probe-wise weights into account
# because this would require refitting the linear model for each probe
# Gordon Smyth
# Created 13 Oct 2002. Last modified 19 Oct 2020.
{
# Check number of arguments
if(identical(is.null(contrasts),is.null(coefficients))) stop("Must specify exactly one of contrasts or coefficients")
# If coefficients are input, just subset
if(!is.null(coefficients)) return(fit[,coefficients])
# Check for valid fit object
if(is.null(fit$coefficients)) stop("fit must contain coefficients component")
if(is.null(fit$stdev.unscaled)) stop("fit must contain stdev.unscaled component")
# Remove test statistics in case eBayes() has previously been run on the fit object
fit$t <- NULL
fit$p.value <- NULL
fit$lods <- NULL
fit$F <- NULL
fit$F.p.value <- NULL
# Number of coefficients in fit
ncoef <- ncol(fit$coefficients)
# Check contrasts.
if(anyNA(contrasts)) stop("NAs not allowed in contrasts")
contrasts <- as.matrix(contrasts)
if(!identical(nrow(contrasts),ncoef)) stop("Number of rows of contrast matrix must match number of coefficients in fit")
rn <- rownames(contrasts)
cn <- colnames(fit$coefficients)
if(!is.null(rn) && !is.null(cn) && !identical(rn,cn)) warning("row names of contrasts don't match col names of coefficients")
fit$contrasts <- contrasts
# Special case of contrast matrix with 0 columns
if(!ncol(contrasts)) return(fit[,0])
# Correlation matrix of estimable coefficients
# Test whether design was orthogonal
if(is.null(fit$cov.coefficients)) {
warning("cov.coefficients not found in fit - assuming coefficients are orthogonal",call.=FALSE)
var.coef <- colMeans(fit$stdev.unscaled^2)
fit$cov.coefficients <- diag(var.coef,nrow=ncoef)
cormatrix <- diag(nrow=ncoef)
orthog <- TRUE
} else {
cormatrix <- cov2cor(fit$cov.coefficients)
if(length(cormatrix) < 2) {
orthog <- TRUE
} else {
orthog <- sum(abs(cormatrix[lower.tri(cormatrix)])) < 1e-12
}
}
# If design matrix was singular, reduce to estimable coefficients
r <- nrow(cormatrix)
if(r < ncoef) {
if(is.null(fit$pivot)) stop("cor.coef not full rank but pivot column not found in fit")
est <- fit$pivot[1:r]
if(any(contrasts[-est,]!=0)) stop("trying to take contrast of non-estimable coefficient")
contrasts <- contrasts[est,,drop=FALSE]
fit$coefficients <- fit$coefficients[,est,drop=FALSE]
fit$stdev.unscaled <- fit$stdev.unscaled[,est,drop=FALSE]
ncoef <- r
}
# Remove coefficients that don't appear in any contrast
# (Not necessary but can make function faster)
ContrastsAllZero <- which(rowSums(abs(contrasts))==0)
if(length(ContrastsAllZero)) {
contrasts <- contrasts[-ContrastsAllZero,,drop=FALSE]
fit$coefficients <- fit$coefficients[,-ContrastsAllZero,drop=FALSE]
fit$stdev.unscaled <- fit$stdev.unscaled[,-ContrastsAllZero,drop=FALSE]
fit$cov.coefficients <- fit$cov.coefficients[-ContrastsAllZero,-ContrastsAllZero,drop=FALSE]
cormatrix <- cormatrix[-ContrastsAllZero,-ContrastsAllZero,drop=FALSE]
ncoef <- ncol(fit$coefficients)
}
# Replace NA coefficients with large (but finite) standard deviations
# to allow zero contrast entries to clobber NA coefficients.
NACoef <- anyNA(fit$coefficients)
if(NACoef) {
i <- is.na(fit$coefficients)
fit$coefficients[i] <- 0
fit$stdev.unscaled[i] <- 1e30
}
# New coefficients
fit$coefficients <- fit$coefficients %*% contrasts
# Test whether design was orthogonal
if(length(cormatrix) < 2) {
orthog <- TRUE
} else {
orthog <- all(abs(cormatrix[lower.tri(cormatrix)]) < 1e-14)
}
# New correlation matrix
R <- chol(fit$cov.coefficients)
fit$cov.coefficients <- crossprod(R %*% contrasts)
# fit$pivot <- NULL
# New standard deviations
if(orthog)
fit$stdev.unscaled <- sqrt(fit$stdev.unscaled^2 %*% contrasts^2)
else {
R <- chol(cormatrix)
ngenes <- NROW(fit$stdev.unscaled)
ncont <- NCOL(contrasts)
U <- matrix(1,ngenes,ncont,dimnames=list(rownames(fit$stdev.unscaled),colnames(contrasts)))
o <- array(1,c(1,ncoef))
for (i in 1:ngenes) {
RUC <- R %*% .vecmat(fit$stdev.unscaled[i,],contrasts)
U[i,] <- sqrt(o %*% RUC^2)
}
fit$stdev.unscaled <- U
}
# Replace NAs if necessary
if(NACoef) {
i <- (fit$stdev.unscaled > 1e20)
fit$coefficients[i] <- NA
fit$stdev.unscaled[i] <- NA
}
fit
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.