oncoplot: draw an oncoplot

Description Usage Arguments Details Value See Also Examples

View source: R/oncoplot.R

Description

takes output generated by read.maf and draws an oncoplot

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
oncoplot(
  maf,
  top = 20,
  minMut = NULL,
  genes = NULL,
  altered = FALSE,
  drawRowBar = TRUE,
  drawColBar = TRUE,
  leftBarData = NULL,
  leftBarLims = NULL,
  rightBarData = NULL,
  rightBarLims = NULL,
  topBarData = NULL,
  logColBar = FALSE,
  includeColBarCN = TRUE,
  clinicalFeatures = NULL,
  annotationColor = NULL,
  annotationDat = NULL,
  pathways = NULL,
  selectedPathways = NULL,
  draw_titv = FALSE,
  showTumorSampleBarcodes = FALSE,
  barcode_mar = 4,
  barcodeSrt = 90,
  gene_mar = 5,
  anno_height = 1,
  legend_height = 4,
  sortByAnnotation = FALSE,
  groupAnnotationBySize = TRUE,
  annotationOrder = NULL,
  sortByMutation = FALSE,
  keepGeneOrder = FALSE,
  GeneOrderSort = TRUE,
  sampleOrder = NULL,
  additionalFeature = NULL,
  additionalFeaturePch = 20,
  additionalFeatureCol = "gray70",
  additionalFeatureCex = 0.9,
  genesToIgnore = NULL,
  removeNonMutated = TRUE,
  fill = TRUE,
  cohortSize = NULL,
  colors = NULL,
  bgCol = "#CCCCCC",
  borderCol = "white",
  annoBorderCol = NA,
  numericAnnoCol = NULL,
  drawBox = FALSE,
  fontSize = 0.8,
  SampleNamefontSize = 1,
  titleFontSize = 1.5,
  legendFontSize = 1.2,
  annotationFontSize = 1.2,
  sepwd_genes = 0.5,
  sepwd_samples = 0.25,
  writeMatrix = FALSE,
  colbar_pathway = FALSE,
  showTitle = TRUE,
  titleText = NULL
)

Arguments

maf

an MAF object generated by read.maf

top

how many top genes to be drawn. defaults to 20.

minMut

draw all genes with 'min' number of mutations. Can be an integer or fraction (of samples mutated), Default NULL

genes

Just draw oncoplot for these genes. Default NULL.

altered

Default FALSE. Chooses top genes based on muatation status. If TRUE chooses top genes based alterations (CNV or mutation).

drawRowBar

logical. Plots righ barplot for each gene. Default TRUE.

drawColBar

logical plots top barplot for each sample. Default TRUE.

leftBarData

Data for leftside barplot. Must be a data.frame with two columns containing gene names and values. Default 'NULL'

leftBarLims

limits for 'leftBarData'. Default 'NULL'.

rightBarData

Data for rightside barplot. Must be a data.frame with two columns containing to gene names and values. Default 'NULL' which draws distibution by variant classification. This option is applicable when only 'drawRowBar' is TRUE.

rightBarLims

limits for 'rightBarData'. Default 'NULL'.

topBarData

Default 'NULL' which draws absolute number of mutation load for each sample. Can be overridden by choosing one clinical indicator(Numeric) or by providing a two column data.frame contaning sample names and values for each sample. This option is applicable when only 'drawColBar' is TRUE.

logColBar

Plot top bar plot on log10 scale. Default FALSE.

includeColBarCN

Whether to include CN in column bar plot. Default TRUE

clinicalFeatures

columns names from 'clinical.data' slot of MAF to be drawn in the plot. Dafault NULL.

annotationColor

Custom colors to use for 'clinicalFeatures'. Must be a named list containing a named vector of colors. Default NULL. See example for more info.

annotationDat

If MAF file was read without clinical data, provide a custom data.frame with a column Tumor_Sample_Barcode containing sample names along with rest of columns with annotations. You can specify which columns to be drawn using 'clinicalFeatures' argument.

pathways

Default 'NULL'. Can be 'auto', or a two column data.frame/tsv-file with genes and correspoding pathway mappings.'

selectedPathways

Manually provide the subset of pathway names to be seletced from 'pathways'. Default NULL. In case 'pathways' is 'auto' draws top 3 altered pathways.

draw_titv

logical Includes TiTv plot. FALSE

showTumorSampleBarcodes

logical to include sample names.

barcode_mar

Margin width for sample names. Default 4

barcodeSrt

Rotate sample labels. Default 90.

gene_mar

Margin width for gene names. Default 5

anno_height

Height of plotting area for sample annotations. Default 1

legend_height

Height of plotting area for legend. Default 4

sortByAnnotation

logical sort oncomatrix (samples) by provided 'clinicalFeatures'. Sorts based on first 'clinicalFeatures'. Defaults to FALSE. column-sort

groupAnnotationBySize

Further group 'sortByAnnotation' orders by their size. Defaults to TRUE. Largest groups comes first.

annotationOrder

Manually specify order for annotations. Works only for first 'clinicalFeatures'. Default NULL.

sortByMutation

Force sort matrix according mutations. Helpful in case of MAF was read along with copy number data. Default FALSE.

keepGeneOrder

logical whether to keep order of given genes. Default FALSE, order according to mutation frequency

GeneOrderSort

logical this is applicable when 'keepGeneOrder' is TRUE. Default TRUE

sampleOrder

Manually speify sample names for oncolplot ordering. Default NULL.

additionalFeature

a vector of length two indicating column name in the MAF and the factor level to be highlighted. Provide a list of values for highlighting more than one features

additionalFeaturePch

Default 20

additionalFeatureCol

Default "gray70"

additionalFeatureCex

Default 0.9

genesToIgnore

do not show these genes in Oncoplot. Default NULL.

removeNonMutated

Logical. If TRUE removes samples with no mutations in the oncoplot for better visualization. Default TRUE.

fill

Logical. If TRUE draws genes and samples as blank grids even when they are not altered.

cohortSize

Number of sequenced samples in the cohort. Default all samples from Cohort. You can manually specify the cohort size. Default NULL

colors

named vector of colors for each Variant_Classification.

bgCol

Background grid color for wild-type (not-mutated) samples. Default gray - "#CCCCCC"

borderCol

border grid color (not-mutated) samples. Default 'white'.

annoBorderCol

border grid color for annotations. Default NA.

numericAnnoCol

color palette used for numeric annotations. Default 'YlOrBr' from RColorBrewer

drawBox

logical whether to draw a box around main matrix. Default FALSE

fontSize

font size for gene names. Default 0.8.

SampleNamefontSize

font size for sample names. Default 1

titleFontSize

font size for title. Default 1.5

legendFontSize

font size for legend. Default 1.2

annotationFontSize

font size for annotations. Default 1.2

sepwd_genes

size of lines seperating genes. Default 0.5

sepwd_samples

size of lines seperating samples. Default 0.25

writeMatrix

writes character coded matrix used to generate the plot to an output file.

colbar_pathway

Draw top column bar with respect to diplayed pathway. Default FALSE.

showTitle

Default TRUE

titleText

Custom title. Default 'NULL'

Details

Takes maf file as input and plots it as a matrix. Any desired clincal features can be added at the bottom of the oncoplot by providing clinicalFeatures. Oncoplot can be sorted either by mutations or by clinicalFeatures using arguments sortByMutation and sortByAnnotation respectively.

Value

None.

See Also

oncostrip

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools')
laml <- read.maf(maf = laml.maf, clinicalData = laml.clin)
#Basic onocplot
oncoplot(maf = laml, top = 3)
#Changing colors for variant classifications (You can use any colors, here in this example we will use a color palette from RColorBrewer)
col = RColorBrewer::brewer.pal(n = 8, name = 'Paired')
names(col) = c('Frame_Shift_Del','Missense_Mutation', 'Nonsense_Mutation', 'Multi_Hit', 'Frame_Shift_Ins',
               'In_Frame_Ins', 'Splice_Site', 'In_Frame_Del')
#Color coding for FAB classification; try getAnnotations(x = laml) to see available annotations.
fabcolors = RColorBrewer::brewer.pal(n = 8,name = 'Spectral')
names(fabcolors) = c("M0", "M1", "M2", "M3", "M4", "M5", "M6", "M7")
fabcolors = list(FAB_classification = fabcolors)
oncoplot(maf = laml, colors = col, clinicalFeatures = 'FAB_classification', sortByAnnotation = TRUE, annotationColor = fabcolors)

Example output

-Reading
-Validating
-Silent variants: 475 
-Summarizing
-Processing clinical data
-Finished in 0.715s elapsed (0.651s cpu) 

maftools documentation built on Feb. 6, 2021, 2 a.m.