R/plot_composition.R

Defines functions plot_composition

Documented in plot_composition

#' @title Taxonomic Composition Plot
#' @description Plot taxon abundance for samples.
#' @param x \code{\link{phyloseq-class}} object
#' @param sample.sort Order samples. Various criteria are available:
#' \itemize{
#' \item NULL or 'none': No sorting
#' \item A single character string: indicate the metadata field to be used
#'  for ordering. Or: if this string is found from the tax_table, then sort
#'  by the
#'  corresponding taxonomic group.
#' \item A character vector: sample IDs indicating the sample ordering.
#' \item 'neatmap' Order samples based on the neatmap approach.
#' See \code{\link{neatsort}}. By default, 'NMDS' method with 'bray'
#' distance is used. For other options, arrange the samples manually
#' with the function.
#' }
#' @param otu.sort Order taxa. Same options as for the sample.sort argument
#' but instead of metadata, taxonomic table is used.
#' Also possible to sort by 'abundance'.
#' @param x.label Specify how to label the x axis.
#' This should be one of the variables in sample_variables(x).
#' @param plot.type Plot type: 'barplot' or 'heatmap'
#' @param verbose verbose
#'  (but not in sample/taxon ordering).
#' The options are 'Z-OTU', 'Z-Sample', 'log10' and 'compositional'.
#' See the \code{\link{transform}} function.
#' @param average_by Average the samples by the average_by variable
#' @param group_by Group by this variable (in plot.type "barplot")
#' @param ... Arguments to be passed (for \code{\link{neatsort}} function)
#' @return A \code{\link{ggplot}} plot object.
#' @export
#' @examples
#' library(dplyr)
#' data(atlas1006)
#' pseq <- atlas1006 %>%
#'    subset_samples(DNA_extraction_method == "r") %>%
#'    aggregate_taxa(level = "Phylum") %>%
#'    transform(transform = "compositional")
#' p <- plot_composition(pseq, sample.sort = "Firmicutes",
#'          otu.sort = "abundance", verbose = TRUE) +
#'      scale_fill_manual(values = default_colors("Phylum")[taxa(pseq)]) 
#' @keywords utilities
plot_composition <- function(x,
    sample.sort=NULL,
    otu.sort=NULL,
    x.label="sample",
    plot.type="barplot",
    verbose=FALSE, 
    average_by=NULL,
    group_by = NULL, ...) {
    
    # Avoid warnings
    Sample <- Abundance <- Taxon <- Group <- Tax <-
        horiz <- value <- scales <- ID <- 
        meta <- OTU <- taxic <- otu.df <- taxmat <-  new.tax<- NULL
    if (!is.null(x@phy_tree)){
        x@phy_tree <- NULL
    }
        
    xorig <- x
    if (verbose) {message("Pick the abundance matrix taxa x samples")}
    abu <- abundances(x)
    if (verbose) {message("Average the samples by group")}
    group <- NULL
    if (!is.null(average_by)) {
        dff <- as.data.frame(t(abu))
        dff$group <- sample_data(x)[[average_by]]
        if (is.numeric(dff$group)) {
            dff$group <- factor(dff$group, levels=sort(unique(dff$group)))
        }
        # Remove samples with no group info
        dff <- dff %>% filter(!is.na(group))
        dff$group <- droplevels(dff$group)
        # av <- ddply(dff, "group", colwise(mean))
        av <- aggregate(. ~ group, data = dff, mean)
        rownames(av) <- as.character(av$group)
        av$group <- NULL
        abu <- t(av)  # taxa x groups
    }

    if (verbose) {message("Sort samples")}
    if (is.null(sample.sort) || sample.sort == "none" ||
        !is.null(average_by)) {
        # No sorting sample.sort <- sample_names(x)
        sample.sort <- colnames(abu)
    } else if (length(sample.sort) == 1 && sample.sort %in% taxa(xorig)) {
        tax <- sample.sort
        sample.sort <- rev(sample_names(x)[order(abundances(x)[tax,])])
    } else if (length(sample.sort) == 1 &&
        sample.sort %in% names(sample_data(x)) && 
        is.null(average_by)) {
        # Sort by metadata field
        sample.sort <- rownames(sample_data(x))[order(
        sample_data(x)[[sample.sort]])]
    } else if (all(sample.sort %in% sample_names(x)) & is.null(average_by)) {
        # Use predefined order
        sample.sort <- sample.sort
    } else if (length(sample.sort) == 1 && sample.sort == "neatmap") {
        sample.sort <- neatsort(x, method="NMDS", distance="bray",
        target="sites", first=NULL)
    } else if (is.vector(sample.sort) && length(sample.sort) > 1) {
        sample.sort <- sample_names(x)[sample.sort]            
    } else if (!sample.sort %in% names(sample_data(x))) {
        warning(paste("The sample.sort argument", sample.sort,
        "is not included in sample_data(x). 
            Using original sample ordering."))
        sample.sort <- sample_names(x)
    }

    # Sort taxa
    if (is.null(otu.sort) || otu.sort == "none") {
        # No sorting
        otu.sort <- taxa(x)
    } else if (length(otu.sort) == 1 && otu.sort == "abundance2") {
        otu.sort <- rev(c(rev(names(sort(rowSums(abu)))[seq(1, nrow(abu), 2)]),
        names(sort(rowSums(abu)))[seq(2, nrow(abu), 2)]))
    } else if (length(otu.sort) == 1 && otu.sort == "abundance") {
        otu.sort <- rev(names(sort(rowSums(abu))))
    } else if (length(otu.sort) == 1 && otu.sort %in%
        colnames(tax_table(x))) {
        otu.sort <- rownames(sample_data(x))[order(tax_table(x)[[otu.sort]])]
    } else if (all(otu.sort %in% taxa(x))) {
        # Use predefined order
        otu.sort <- otu.sort
    } else if (length(otu.sort) == 1 && otu.sort == "neatmap") {
        otu.sort <- neatsort(x, method="NMDS", distance="bray",
        target="species", first=NULL)
    }
    
    # Abundances as data.frame dfm <- psmelt(x)
    dfm <- psmelt(otu_table(abu, taxa_are_rows = TRUE))
    names(dfm) <- c("Tax", "Sample", "Abundance")
    dfm$Sample <- factor(dfm$Sample, levels=sample.sort)
    dfm$Tax <- factor(dfm$Tax, levels=otu.sort)

    if (!is.null(group_by)) {
    dfm$Group <- meta(x)[[group_by]][match(as.character(dfm$Sample),
        sample_names(x))]
    }

    # SampleIDs for plotting
    if (x.label %in% colnames(sample_data(x)) & is.null(average_by)) {
        
        meta <- sample_data(x)
        dfm$xlabel <- as.vector(unlist(meta[as.character(dfm$Sample), x.label]))
        
        # Sort the levels as in the original metadata
        if (is.factor(meta[, x.label])) {            
            lev <- levels(meta[, x.label])            
        } else {            
            lev <- unique(as.character(unname(unlist(meta[, x.label]))))
        }       
        dfm$xlabel <- factor(dfm$xlabel, levels=lev)        
    } else {       
        dfm$xlabel <- dfm$Sample        
    }
    
    if (verbose) {message("Construct the plots")}   
    if (plot.type == "barplot") {
        p <- make_barplot1(dfm, group_by)
    } else if (plot.type == "heatmap") {
        p <- make_heatmap1(x, otu.sort, sample.sort, verbose)        
    } else if (plot.type == "lineplot") {
        p <- make_lineplot1(dfm) 
    } else {
        stop("plot.type argument not recognized")
    }

    p
    
}

make_heatmap1 <- function (x, otu.sort, sample.sort, verbose=FALSE) {

        if (verbose) { message("Constructing the heatmap.") }

        # Taxa x samples otu matrix
        otu <- abundances(x)

        # Remove NAs after the transform
        otu <- otu[rowMeans(is.na(otu)) < 1, colMeans(is.na(otu)) < 1]




        otu.sort <- otu.sort[otu.sort %in% rownames(otu)]
        sample.sort <- sample.sort[sample.sort %in% colnames(otu)]
        tmp <- melt(otu[otu.sort, sample.sort])

        p <- heat(tmp, colnames(tmp)[[1]], colnames(tmp)[[2]],
            colnames(tmp)[[3]])

    p
}

make_barplot1 <- function (dfm, group_by) {

    Tax <- Sample <- Abundance <- NULL

        # Provide barplot
        dfm <- dfm %>% arrange(Tax)  # Show Taxs always in the same order
        dfm$Tax <- factor(dfm$Tax, levels = unique(dfm$Tax))

        p <- ggplot(dfm, aes(x=Sample, y=Abundance, fill=Tax)) +
            geom_bar(position="stack", stat="identity") +
            scale_x_discrete(labels=dfm$xlabel, breaks=dfm$Sample)

        # Name appropriately
        p <- p + labs(y = "Abundance")
        
        # Rotate horizontal axis labels, and adjust
        p <- p + theme(axis.text.x=element_text(angle=90, vjust=0.5,
            hjust=0))
        p <- p + guides(fill=guide_legend(reverse=FALSE))

        if (!is.null(group_by)) {
            p <- p + facet_grid(.~Group, drop = TRUE,
                    space = "free", scales = "free") 

        }
    p
}

make_lineplot1 <- function (dfm) {

    Tax <- Sample <- Abundance <- NULL

        dfm <- dfm %>% arrange(Tax)  # Show Taxs always in the same order
        p <- ggplot(dfm, aes(x=Sample, y=Abundance, color=Tax, group = Tax)) +
        geom_point() +
        geom_line() +
        scale_x_discrete(labels=dfm$xlabel, breaks=dfm$Sample) +
        labs(y = "Abundance") +
        theme(axis.text.x=element_text(angle=90, vjust=0.5, hjust=0)) +
        guides(fill=guide_legend(reverse=FALSE))

    p

}

Try the microbiome package in your browser

Any scripts or data that you put into this service are public.

microbiome documentation built on Nov. 8, 2020, 5:08 p.m.