Nothing
# Internal functions -----------------------------------------------------------
.guessArrayTypes <- function(nProbes) {
if (nProbes >= 622000 && nProbes <= 623000) {
arrayAnnotation <- c(
array = "IlluminaHumanMethylation450k",
annotation = .default.450k.annotation)
} else if (nProbes >= 1050000 && nProbes <= 1053000) {
# NOTE: "Current EPIC scan type"
arrayAnnotation <- c(
array = "IlluminaHumanMethylationEPIC",
annotation = .default.epic.annotation)
} else if (nProbes >= 1032000 && nProbes <= 1033000) {
# NOTE: "Old EPIC scan type"
arrayAnnotation <- c(
array = "IlluminaHumanMethylationEPIC",
annotation = .default.epic.annotation)
} else if (nProbes >= 54000 && nProbes <= 56000) {
arrayAnnotation <- c(
array = "IlluminaHumanMethylation27k",
annotation = .default.27k.annotation)
} else if (nProbes >= 41000 & nProbes <= 41100) {
arrayAnnotation <- c(
array = "HorvathMammalMethylChip40",
annotation = "test.unknown")
} else {
arrayAnnotation <- c(array = "Unknown", annotation = "Unknown")
}
arrayAnnotation
}
# Exported functions -----------------------------------------------------------
read.metharray <- function(basenames, extended = FALSE, verbose = FALSE,
force = FALSE) {
# TODO: Need to think about API. Currently, if `BACKEND` is NULL then the
# RGSet is matrix-backed. However, within the DelayedArray package,
# BACKEND = NULL means to create a DelayedArray with an ordinary
# array as the seed. This is a source of slight tension. However, in
# general there is no advantage to using a DelayedMatrix with an
# ordinary matrix as the seed over directly using the ordinary matrix
# (at least within minfi).
BACKEND <- getAutoRealizationBackend()
BPREDO <- list()
BPPARAM <- SerialParam()
# Check files exist
basenames <- sub("_Grn\\.idat.*", "", basenames)
basenames <- sub("_Red\\.idat.*", "", basenames)
stopifnot(!anyDuplicated(basenames))
G.files <- paste(basenames, "_Grn.idat", sep = "")
names(G.files) <- basename(basenames)
these.dont.exists <- !file.exists(G.files)
if (any(these.dont.exists)) {
G.files[these.dont.exists] <- paste0(G.files[these.dont.exists], ".gz")
}
if (!all(file.exists(G.files))) {
noexits <- sub("\\.gz", "", G.files[!file.exists(G.files)])
stop("The following specified files do not exist:",
paste(noexits, collapse = ", "))
}
R.files <- paste(basenames, "_Red.idat", sep = "")
names(R.files) <- basename(basenames)
these.dont.exists <- !file.exists(R.files)
if (any(these.dont.exists)) {
R.files[these.dont.exists] <- paste0(R.files[these.dont.exists], ".gz")
}
if (!all(file.exists(R.files))) {
noexits <- R.files[!file.exists(G.files)]
stop("The following specified files do not exist:",
paste(noexits, collapse = ", "))
}
# Load 'Quants' from IDAT file, including 'SD' and 'NBeads' if extend is
# TRUE
# TODO: Perform fewer realizations. E.g., if the block size is set large
# enough so that k arrays' data can be kept in memory then should
# only perform a realization every k-th array.
stime <- system.time({
G.Quants <- bplapply(G.files, function(xx) {
if (verbose) message("[read.metharray] Reading ", basename(xx))
Quants <- readIDAT(xx)[["Quants"]]
if (!extended) {
Quants <- Quants[, "Mean", drop = FALSE]
}
if (!is.null(BACKEND)) {
Quants <- realize(Quants, BACKEND = BACKEND)
}
Quants
}, BPREDO = BPREDO, BPPARAM = BPPARAM)
R.Quants <- bplapply(R.files, function(xx) {
if (verbose) message("[read.metharray] Reading ", basename(xx))
Quants <- readIDAT(xx)[["Quants"]]
if (!extended) {
Quants <- Quants[, "Mean", drop = FALSE]
}
if (!is.null(BACKEND)) {
Quants <- realize(Quants, BACKEND = BACKEND)
}
Quants
}, BPREDO = BPREDO, BPPARAM = BPPARAM)
})[3]
if (verbose) {
message(sprintf("[read.metharray] Read idat files in %.1f seconds",
stime))
}
if (verbose) {
message("[read.metharray] Creating data matrices ... ",
appendLF = FALSE)
}
ptime1 <- proc.time()
allNProbes <- vapply(G.Quants, nrow, integer(1L))
arrayTypes <- cbind(do.call(rbind, lapply(allNProbes, .guessArrayTypes)),
size = allNProbes)
sameLength <- (length(unique(arrayTypes[, "size"])) == 1)
sameArray <- (length(unique(arrayTypes[, "array"])) == 1)
if (!sameLength && !sameArray) {
cat("[read.metharray] Trying to parse IDAT files from different arrays.\n")
cat(" Inferred Array sizes and types:\n")
print(arrayTypes[, c("array", "size")])
stop("[read.metharray] Trying to parse different IDAT files, of ",
"different size and type.")
}
if (!sameLength && sameArray && !force) {
stop("[read.metharray] Trying to parse IDAT files with different ",
"array size but seemingly all of the same type.\n You can force ",
"this by 'force=TRUE', see the man page ?read.metharray")
}
commonAddresses <- as.character(
Reduce("intersect", lapply(G.Quants, rownames)))
# NOTE: Must manually set colnames because it is not safe to assume these
# will be correctly deparsed
GreenMean <- do.call(
cbind,
lapply(G.Quants, function(xx) xx[commonAddresses, "Mean"]))
colnames(GreenMean) <- names(G.Quants)
RedMean <- do.call(
cbind,
lapply(R.Quants, function(xx) xx[commonAddresses, "Mean"]))
colnames(RedMean) <- names(R.Quants)
if (extended) {
GreenSD <- do.call(
cbind,
lapply(G.Quants, function(xx) xx[commonAddresses, "SD"]))
colnames(GreenSD) <- names(G.Quants)
RedSD <- do.call(
cbind,
lapply(R.Quants, function(xx) xx[commonAddresses, "SD"]))
colnames(RedSD) <- names(R.Quants)
NBeads <- do.call(
cbind,
lapply(G.Quants, function(xx) xx[commonAddresses, "NBeads"]))
colnames(NBeads) <- names(G.Quants)
}
ptime2 <- proc.time()
stime <- (ptime2 - ptime1)[3]
if (verbose) {
message(sprintf("done in %.1f seconds", stime))
}
if (verbose) {
message("[read.metharray] Instantiating final object ... ",
appendLF = FALSE)
}
ptime1 <- proc.time()
if (extended) {
out <- RGChannelSetExtended(
Red = RedMean,
Green = GreenMean,
RedSD = RedSD,
GreenSD = GreenSD,
NBeads = NBeads)
} else {
out <- RGChannelSet(Red = RedMean, Green = GreenMean)
}
rownames(out) <- commonAddresses
out@annotation <- c(array = arrayTypes[1, 1], annotation = arrayTypes[1, 2])
ptime2 <- proc.time()
stime <- (ptime2 - ptime1)[3]
if (verbose) {
message(sprintf("done in %.1f seconds", stime))
}
out
}
read.metharray.sheet <- function(base, pattern = "csv$", ignore.case = TRUE,
recursive = TRUE, verbose = TRUE) {
readSheet <- function(file) {
dataheader <- grep("^\\[DATA\\]", readLines(file), ignore.case = TRUE)
if (length(dataheader) == 0) dataheader <- 0
df <- read.csv(file, stringsAsFactor = FALSE, skip = dataheader)
nam <- grep(
pattern = "Sentrix_Position",
x = names(df),
ignore.case = TRUE,
value = TRUE)
if (length(nam) == 1) {
df$Array <- as.character(df[, nam])
df[, nam] <- NULL
}
nam <- grep(
pattern = "Array[\\._]ID",
x = names(df),
ignore.case = TRUE,
value = TRUE)
if (length(nam) == 1) {
df$Array <- as.character(df[, nam])
df[, nam] <- NULL
}
if (!"Array" %in% names(df)) {
warning(sprintf("Could not infer array name for file: %s", file))
}
nam <- grep("Sentrix_ID", names(df), ignore.case = TRUE, value = TRUE)
if (length(nam) == 1) {
df$Slide <- as.character(df[, nam])
df[, nam] <- NULL
}
nam <- grep(
pattern = "Slide[\\._]ID",
x = names(df),
ignore.case = TRUE,
value = TRUE)
if (length(nam) == 1) {
df$Slide <- as.character(df[, nam])
df[, nam] <- NULL
}
if (!"Slide" %in% names(df)) {
warning(sprintf("Could not infer slide name for file: %s", file))
} else {
df[, "Slide"] <- as.character(df[, "Slide"])
}
nam <- grep(
pattern = "Plate[\\._]ID",
x = names(df),
ignore.case = TRUE,
value = TRUE)
if (length(nam) == 1) {
df$Plate <- as.character(df[, nam])
df[, nam] <- NULL
}
for (nam in c("Pool_ID", "Sample_Plate", "Sample_Well")) {
if (nam %in% names(df)) {
df[[nam]] <- as.character(df[[nam]])
}
}
if (!is.null(df$Array)) {
patterns <- sprintf("%s_%s_Grn.idat", df$Slide, df$Array)
allfiles <- list.files(
path = dirname(file),
recursive = recursive,
full.names = TRUE)
# TODO: Switch sapply() to vapply()
basenames <- sapply(
X = patterns,
FUN = function(xx) grep(xx, allfiles, value = TRUE))
names(basenames) <- NULL
basenames <- sub("_Grn\\.idat.*", "", basenames, ignore.case = TRUE)
df$Basename <- basenames
}
df
}
if (!all(file.exists(base))) stop("'base' does not exists")
info <- file.info(base)
if (!all(info$isdir) && !all(!info$isdir)) {
stop("'base needs to be either directories or files")
}
if (all(info$isdir)) {
csvfiles <- list.files(
path = base,
recursive = recursive,
pattern = pattern,
ignore.case = ignore.case,
full.names = TRUE)
if (verbose) {
message("[read.metharray.sheet] Found the following CSV files:")
print(csvfiles)
}
} else {
csvfiles <- list.files(base, full.names = TRUE)
}
dfs <- lapply(csvfiles, readSheet)
namesUnion <- Reduce(union, lapply(dfs, names))
df <- do.call(
what = rbind,
args = lapply(dfs, function(df) {
newnames <- setdiff(namesUnion, names(df))
newdf <- matrix(
data = NA,
ncol = length(newnames),
nrow = nrow(df),
dimnames = list(NULL, newnames))
cbind(df, as.data.frame(newdf))
}))
df
}
read.metharray.exp <- function(base = NULL, targets = NULL, extended = FALSE,
recursive = FALSE, verbose = FALSE,
force = FALSE) {
if (!is.null(targets)) {
if (!"Basename" %in% names(targets)) {
stop("Need 'Basename' amongst the column names of 'targets'")
}
if (!is.null(base)) {
files <- file.path(base, basename(targets$Basename))
} else {
files <- targets$Basename
}
rgSet <- read.metharray(
basenames = files,
extended = extended,
verbose = verbose,
force = force)
pD <- targets
pD$filenames <- files
rownames(pD) <- colnames(rgSet)
colData(rgSet) <- as(pD, "DataFrame")
return(rgSet)
}
# Now we just read all files in the directory
Grn.files <- list.files(
path = base,
pattern = "_Grn.idat$",
recursive = recursive,
ignore.case = TRUE,
full.names = TRUE)
Red.files <- list.files(
path = base,
pattern = "_Red.idat$",
recursive = recursive,
ignore.case = TRUE,
full.names = TRUE)
if (length(Grn.files) == 0 || length(Red.files) == 0) {
stop("No IDAT files were found")
}
commonFiles <- intersect(
x = sub("_Grn.idat$", "", Grn.files),
y = sub("_Red.idat$", "", Red.files))
if (length(commonFiles) == 0) {
stop("No IDAT files with both Red and Green channel were found")
}
commonFiles.Grn <- paste(commonFiles, "_Grn.idat", sep = "")
commonFiles.Red <- paste(commonFiles, "_Red.idat", sep = "")
if (!setequal(commonFiles.Grn, Grn.files)) {
warning(
sprintf("the following files only exists for the green channel: %s",
paste(
setdiff(Grn.files, commonFiles.Grn), collapse = ", ")))
}
if (!setequal(commonFiles.Red, Red.files)) {
warning(
sprintf("the following files only exists for the red channel: %s",
paste(
setdiff(Red.files, commonFiles.Red), collapse = ", ")))
}
read.metharray(
basenames = commonFiles,
extended = extended,
verbose = verbose,
force = force)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.