R/read.meth.R

Defines functions read.metharray.exp read.metharray.sheet read.metharray .guessArrayTypes

Documented in read.metharray read.metharray.exp read.metharray.sheet

# Internal functions -----------------------------------------------------------

.guessArrayTypes <- function(nProbes) {
    if (nProbes >= 622000 && nProbes <= 623000) {
        arrayAnnotation <- c(
            array = "IlluminaHumanMethylation450k",
            annotation = .default.450k.annotation)
    } else if (nProbes >= 1050000 && nProbes <= 1053000) {
        # NOTE: "Current EPIC scan type"
        arrayAnnotation <- c(
            array = "IlluminaHumanMethylationEPIC",
            annotation = .default.epic.annotation)
    } else if (nProbes >= 1032000 && nProbes <= 1033000) {
        # NOTE: "Old EPIC scan type"
        arrayAnnotation <- c(
            array = "IlluminaHumanMethylationEPIC",
            annotation = .default.epic.annotation)
    } else if (nProbes >= 54000 && nProbes <= 56000) {
        arrayAnnotation <- c(
            array = "IlluminaHumanMethylation27k",
            annotation = .default.27k.annotation)
    } else if (nProbes >= 41000 & nProbes <= 41100) {
        arrayAnnotation <- c(
            array = "HorvathMammalMethylChip40",
            annotation = "test.unknown")
    } else {
        arrayAnnotation <- c(array = "Unknown", annotation = "Unknown")
    }
    arrayAnnotation
}

# Exported functions -----------------------------------------------------------

read.metharray <- function(basenames, extended = FALSE, verbose = FALSE,
                           force = FALSE) {

    # TODO: Need to think about API. Currently, if `BACKEND` is NULL then the
    #       RGSet is matrix-backed. However, within the DelayedArray package,
    #       BACKEND = NULL means to create a DelayedArray with an ordinary
    #       array as the seed. This is a source of slight tension. However, in
    #       general there is no advantage to using a DelayedMatrix with an
    #       ordinary matrix as the seed over directly using the ordinary matrix
    #       (at least within minfi).
    BACKEND <- getAutoRealizationBackend()
    BPREDO <- list()
    BPPARAM <- SerialParam()

    # Check files exist
    basenames <- sub("_Grn\\.idat.*", "", basenames)
    basenames <- sub("_Red\\.idat.*", "", basenames)
    stopifnot(!anyDuplicated(basenames))
    G.files <- paste(basenames, "_Grn.idat", sep = "")
    names(G.files) <- basename(basenames)
    these.dont.exists <- !file.exists(G.files)
    if (any(these.dont.exists)) {
        G.files[these.dont.exists] <- paste0(G.files[these.dont.exists], ".gz")
    }
    if (!all(file.exists(G.files))) {
        noexits <- sub("\\.gz", "", G.files[!file.exists(G.files)])
        stop("The following specified files do not exist:",
             paste(noexits, collapse = ", "))
    }
    R.files <- paste(basenames, "_Red.idat", sep = "")
    names(R.files) <- basename(basenames)
    these.dont.exists <- !file.exists(R.files)
    if (any(these.dont.exists)) {
        R.files[these.dont.exists] <- paste0(R.files[these.dont.exists], ".gz")
    }
    if (!all(file.exists(R.files))) {
        noexits <- R.files[!file.exists(G.files)]
        stop("The following specified files do not exist:",
             paste(noexits, collapse = ", "))
    }

    # Load 'Quants' from IDAT file, including 'SD' and 'NBeads' if extend is
    #       TRUE
    # TODO: Perform fewer realizations. E.g., if the block size is set large
    #       enough so that k arrays' data can be kept in memory then should
    #       only perform a realization every k-th array.
    stime <- system.time({
        G.Quants <- bplapply(G.files, function(xx) {
            if (verbose) message("[read.metharray] Reading ", basename(xx))
            Quants <- readIDAT(xx)[["Quants"]]
            if (!extended) {
                Quants <- Quants[, "Mean", drop = FALSE]
            }
            if (!is.null(BACKEND)) {
                Quants <- realize(Quants, BACKEND = BACKEND)
            }
            Quants
        }, BPREDO = BPREDO, BPPARAM = BPPARAM)
        R.Quants <- bplapply(R.files, function(xx) {
            if (verbose) message("[read.metharray] Reading ", basename(xx))
            Quants <- readIDAT(xx)[["Quants"]]
            if (!extended) {
                Quants <- Quants[, "Mean", drop = FALSE]
            }
            if (!is.null(BACKEND)) {
                Quants <- realize(Quants, BACKEND = BACKEND)
            }
            Quants
        }, BPREDO = BPREDO, BPPARAM = BPPARAM)
    })[3]
    if (verbose) {
        message(sprintf("[read.metharray] Read idat files in %.1f seconds",
                        stime))
    }
    if (verbose) {
        message("[read.metharray] Creating data matrices ... ",
                appendLF = FALSE)
    }
    ptime1 <- proc.time()
    allNProbes <- vapply(G.Quants, nrow, integer(1L))
    arrayTypes <- cbind(do.call(rbind, lapply(allNProbes, .guessArrayTypes)),
                        size = allNProbes)
    sameLength <- (length(unique(arrayTypes[, "size"])) == 1)
    sameArray <- (length(unique(arrayTypes[, "array"])) == 1)

    if (!sameLength && !sameArray) {
        cat("[read.metharray] Trying to parse IDAT files from different arrays.\n")
        cat("  Inferred Array sizes and types:\n")
        print(arrayTypes[, c("array", "size")])
        stop("[read.metharray] Trying to parse different IDAT files, of ",
             "different size and type.")
    }
    if (!sameLength && sameArray && !force) {
        stop("[read.metharray] Trying to parse IDAT files with different ",
             "array size but seemingly all of the same type.\n  You can force ",
             "this by 'force=TRUE', see the man page ?read.metharray")
    }
    commonAddresses <- as.character(
        Reduce("intersect", lapply(G.Quants, rownames)))
    # NOTE: Must manually set colnames because it is not safe to assume these
    #       will be correctly deparsed
    GreenMean <- do.call(
        cbind,
        lapply(G.Quants, function(xx) xx[commonAddresses, "Mean"]))
    colnames(GreenMean) <- names(G.Quants)
    RedMean <- do.call(
        cbind,
        lapply(R.Quants, function(xx) xx[commonAddresses, "Mean"]))
    colnames(RedMean) <- names(R.Quants)
    if (extended) {
        GreenSD <- do.call(
            cbind,
            lapply(G.Quants, function(xx) xx[commonAddresses, "SD"]))
        colnames(GreenSD) <- names(G.Quants)
        RedSD <- do.call(
            cbind,
            lapply(R.Quants, function(xx) xx[commonAddresses, "SD"]))
        colnames(RedSD) <- names(R.Quants)
        NBeads <- do.call(
            cbind,
            lapply(G.Quants, function(xx) xx[commonAddresses, "NBeads"]))
        colnames(NBeads) <- names(G.Quants)
    }
    ptime2 <- proc.time()
    stime <- (ptime2 - ptime1)[3]
    if (verbose) {
        message(sprintf("done in %.1f seconds", stime))
    }
    if (verbose) {
        message("[read.metharray] Instantiating final object ... ",
                appendLF = FALSE)
    }
    ptime1 <- proc.time()
    if (extended) {
        out <- RGChannelSetExtended(
            Red = RedMean,
            Green = GreenMean,
            RedSD = RedSD,
            GreenSD = GreenSD,
            NBeads = NBeads)
    } else {
        out <- RGChannelSet(Red = RedMean, Green = GreenMean)
    }
    rownames(out) <- commonAddresses
    out@annotation <- c(array = arrayTypes[1, 1], annotation = arrayTypes[1, 2])
    ptime2 <- proc.time()
    stime <- (ptime2 - ptime1)[3]
    if (verbose) {
        message(sprintf("done in %.1f seconds", stime))
    }
    out
}

read.metharray.sheet <- function(base, pattern = "csv$", ignore.case = TRUE,
                                 recursive = TRUE, verbose = TRUE) {
    readSheet <- function(file) {
        dataheader <- grep("^\\[DATA\\]", readLines(file), ignore.case = TRUE)
        if (length(dataheader) == 0) dataheader <- 0
        df <- read.csv(file, stringsAsFactor = FALSE, skip = dataheader)
        nam <- grep(
            pattern = "Sentrix_Position",
            x = names(df),
            ignore.case = TRUE,
            value = TRUE)
        if (length(nam) == 1) {
            df$Array <- as.character(df[, nam])
            df[, nam] <- NULL
        }
        nam <- grep(
            pattern = "Array[\\._]ID",
            x = names(df),
            ignore.case = TRUE,
            value = TRUE)
        if (length(nam) == 1) {
            df$Array <- as.character(df[, nam])
            df[, nam] <- NULL
        }
        if (!"Array" %in% names(df)) {
            warning(sprintf("Could not infer array name for file: %s", file))
        }
        nam <- grep("Sentrix_ID", names(df), ignore.case = TRUE, value = TRUE)
        if (length(nam) == 1) {
            df$Slide <- as.character(df[, nam])
            df[, nam] <- NULL
        }
        nam <- grep(
            pattern = "Slide[\\._]ID",
            x = names(df),
            ignore.case = TRUE,
            value = TRUE)
        if (length(nam) == 1) {
            df$Slide <- as.character(df[, nam])
            df[, nam] <- NULL
        }
        if (!"Slide" %in% names(df)) {
            warning(sprintf("Could not infer slide name for file: %s", file))
        } else {
            df[, "Slide"] <- as.character(df[, "Slide"])
        }
        nam <- grep(
            pattern = "Plate[\\._]ID",
            x = names(df),
            ignore.case = TRUE,
            value = TRUE)
        if (length(nam) == 1) {
            df$Plate <- as.character(df[, nam])
            df[, nam] <- NULL
        }
        for (nam in c("Pool_ID", "Sample_Plate", "Sample_Well")) {
            if (nam %in% names(df)) {
                df[[nam]] <- as.character(df[[nam]])
            }
        }

        if (!is.null(df$Array)) {
            patterns <- sprintf("%s_%s_Grn.idat", df$Slide, df$Array)
            allfiles <- list.files(
                path = dirname(file),
                recursive = recursive,
                full.names = TRUE)
            # TODO: Switch sapply() to vapply()
            basenames <- sapply(
                X = patterns,
                FUN = function(xx) grep(xx, allfiles, value = TRUE))
            names(basenames) <- NULL
            basenames <- sub("_Grn\\.idat.*", "", basenames, ignore.case = TRUE)
            df$Basename <- basenames
        }
        df
    }
    if (!all(file.exists(base))) stop("'base' does not exists")
    info <- file.info(base)
    if (!all(info$isdir) && !all(!info$isdir)) {
        stop("'base needs to be either directories or files")
    }
    if (all(info$isdir)) {
        csvfiles <- list.files(
            path = base,
            recursive = recursive,
            pattern = pattern,
            ignore.case = ignore.case,
            full.names = TRUE)
        if (verbose) {
            message("[read.metharray.sheet] Found the following CSV files:")
            print(csvfiles)
        }
    } else {
        csvfiles <- list.files(base, full.names = TRUE)
    }
    dfs <- lapply(csvfiles, readSheet)
    namesUnion <- Reduce(union, lapply(dfs, names))
    df <- do.call(
        what = rbind,
        args = lapply(dfs, function(df) {
            newnames <- setdiff(namesUnion, names(df))
            newdf <- matrix(
                data = NA,
                ncol = length(newnames),
                nrow = nrow(df),
                dimnames = list(NULL, newnames))
            cbind(df, as.data.frame(newdf))
        }))
    df
}

read.metharray.exp <- function(base = NULL, targets = NULL, extended = FALSE,
                               recursive = FALSE, verbose = FALSE,
                               force = FALSE) {
    if (!is.null(targets)) {
        if (!"Basename" %in% names(targets)) {
            stop("Need 'Basename' amongst the column names of 'targets'")
        }
        if (!is.null(base)) {
            files <- file.path(base, basename(targets$Basename))
        } else {
            files <- targets$Basename
        }
        rgSet <- read.metharray(
            basenames = files,
            extended = extended,
            verbose = verbose,
            force = force)
        pD <- targets
        pD$filenames <- files
        rownames(pD) <- colnames(rgSet)
        colData(rgSet) <- as(pD, "DataFrame")
        return(rgSet)
    }
    # Now we just read all files in the directory
    Grn.files <- list.files(
        path = base,
        pattern = "_Grn.idat$",
        recursive = recursive,
        ignore.case = TRUE,
        full.names = TRUE)
    Red.files <- list.files(
        path = base,
        pattern = "_Red.idat$",
        recursive = recursive,
        ignore.case = TRUE,
        full.names = TRUE)
    if (length(Grn.files) == 0 || length(Red.files) == 0) {
        stop("No IDAT files were found")
    }
    commonFiles <- intersect(
        x = sub("_Grn.idat$", "", Grn.files),
        y = sub("_Red.idat$", "", Red.files))
    if (length(commonFiles) == 0) {
        stop("No IDAT files with both Red and Green channel were found")
    }
    commonFiles.Grn <- paste(commonFiles, "_Grn.idat", sep = "")
    commonFiles.Red <- paste(commonFiles, "_Red.idat", sep = "")
    if (!setequal(commonFiles.Grn, Grn.files)) {
        warning(
            sprintf("the following files only exists for the green channel: %s",
                    paste(
                        setdiff(Grn.files, commonFiles.Grn), collapse = ", ")))
    }
    if (!setequal(commonFiles.Red, Red.files)) {
        warning(
            sprintf("the following files only exists for the red channel: %s",
                    paste(
                        setdiff(Red.files, commonFiles.Red), collapse = ", ")))
    }
    read.metharray(
        basenames = commonFiles,
        extended = extended,
        verbose = verbose,
        force = force)
}

Try the minfi package in your browser

Any scripts or data that you put into this service are public.

minfi documentation built on Nov. 8, 2020, 4:53 p.m.