Nothing
mt.rawp2adjp<-function(rawp,proc=c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY","ABH",
"TSBH"), alpha=0.05, na.rm=FALSE)
{
m<-length(rawp)
if(na.rm){
mgood<-sum(!is.na(rawp))
}else{
mgood<-m
}
n<-length(proc)
a<-length(alpha)
index<-order(rawp)
h0.ABH<-NULL
h0.TSBH<-NULL
spval<-rawp[index]
adjp<-matrix(0,m,n+1)
dimnames(adjp)<-list(NULL,c("rawp",proc))
adjp[,1]<-spval
if(is.element("TSBH",proc))
{
#N.B.: This method performed first in order to handle a potential $adjp
#dimension change in the case that length(alpha)>1.
#Could also be possibly done using more append() functions, should more
#alpha-dependent procedures be developed/included later.
TS.spot <- which(proc=="TSBH")
TSBHs<-paste("TSBH",alpha,sep="_")
newprocs<-append(proc,TSBHs,after=TS.spot)
newprocs<-newprocs[newprocs!="TSBH"]
adjp<-matrix(0,m,n+a)
dimnames(adjp)<-list(NULL,c("rawp",newprocs))
adjp[,1]<-spval
# Apply first-pass BH.
tmp<-spval
for(i in (m-1):1){
tmp[i]<-min(tmp[i+1],min((mgood/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE)
if(is.na(spval[i])) tmp[i]<-NA
}
# Now use first-pass results to estimate h_0, the number of true nulls.
# These results depend on the nominal testing level, alpha.
h0.TSBH <- rep(0,length(alpha))
names(h0.TSBH) <- paste("h0.TSBH",alpha,sep="_")
for(i in 1:length(alpha)){
h0.TSBH[i] <- mgood - sum(tmp < alpha[i]/(1+alpha[i]),na.rm=TRUE)
adjp[,TS.spot+i]<-tmp*h0.TSBH[i]/mgood
}
}
if(is.element("Bonferroni",proc))
{
tmp<-mgood*spval
tmp[tmp>1]<-1
adjp[,"Bonferroni"]<-tmp
}
if(is.element("Holm",proc))
{
tmp<-spval
tmp[1]<-min(mgood*spval[1],1)
for(i in 2:m)
tmp[i]<-max(tmp[i-1],min((mgood-i+1)*spval[i],1))
adjp[,"Holm"]<-tmp
}
if(is.element("Hochberg",proc))
{
tmp<-spval
for(i in (m-1):1){
tmp[i]<-min(tmp[i+1],min((mgood-i+1)*spval[i],1,na.rm=TRUE),na.rm=TRUE)
if(is.na(spval[i])) tmp[i]<-NA
}
adjp[,"Hochberg"]<-tmp
}
if(is.element("SidakSS",proc))
adjp[,"SidakSS"]<-1-(1-spval)^mgood
if(is.element("SidakSD",proc))
{
tmp<-spval
tmp[1]<-1-(1-spval[1])^mgood
for(i in 2:m)
tmp[i]<-max(tmp[i-1],1-(1-spval[i])^(mgood-i+1))
adjp[,"SidakSD"]<-tmp
}
if(is.element("BH",proc))
{
tmp<-spval
for(i in (m-1):1){
tmp[i]<-min(tmp[i+1],min((mgood/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE)
if(is.na(spval[i])) tmp[i]<-NA
}
adjp[,"BH"]<-tmp
}
if(is.element("BY",proc))
{
tmp<-spval
a<-sum(1/(1:mgood))
tmp[m]<-min(a*spval[m], 1)
for(i in (m-1):1){
tmp[i]<-min(tmp[i+1],min((mgood*a/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE)
if(is.na(spval[i])) tmp[i]<-NA
}
adjp[,"BY"]<-tmp
}
if(is.element("ABH",proc))
{
## First obtain estimate of h_0, the number of true null hypotheses.
tmp<-spval
h0.m <- rep(0,mgood)
for(k in 1:mgood){
h0.m[k] <- (mgood+1-k)/(1-spval[k])
}
grab <- min(which(diff(h0.m,na.rm=TRUE)>0),na.rm=TRUE)
h0.ABH <- ceiling(min(h0.m[grab],mgood))
## Now apply BH procedure with adaptive correction.
for(i in (m-1):1){
tmp[i]<-min(tmp[i+1],min((mgood/i)*spval[i],1,na.rm=TRUE),na.rm=TRUE)
if(is.na(spval[i])) tmp[i]<-NA
}
adjp[,"ABH"]<-tmp*h0.ABH/mgood
}
list(adjp=adjp,index=index,h0.ABH=h0.ABH[1],h0.TSBH=h0.TSBH[1:length(alpha)])
}
###########################################################################
mt.reject<-function(adjp,alpha)
{
which<-adjp<=alpha[1]
dimnames(which)<-dimnames(adjp)
if(is.matrix(adjp))
{
r<-matrix(0,length(alpha),ncol(adjp))
for(i in 1:length(alpha))
r[i,] <- colSums(adjp<=alpha[i])
dimnames(r)<-list(alpha,dimnames(adjp)[[2]])
}
if(!is.matrix(adjp))
{
r<-rep(0,length(alpha))
for(i in 1:length(alpha))
r[i]<-sum(adjp<=alpha[i])
}
list(r=r,which=which)
}
###########################################################################
#need ... arg to legend to use with ... in mt.plot
mt.legend<-function(x, y = NULL, legend, fill = NULL, col = "black", lty,
lwd, pch, angle = 45, density = NULL, bty = "o", bg = par("bg"),
pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd, xjust = 0,
yjust = 1, x.intersp = 1, y.intersp = 1, adj = c(0, 0.5),
text.width = NULL, text.col = par("col"), merge = do.lines &&
has.pch, trace = FALSE, plot = TRUE, ncol = 1, horiz = FALSE,...)
{
if (missing(legend) && !missing(y) && (is.character(y) ||
is.expression(y))) {
legend <- y
y <- NULL
}
mfill <- !missing(fill) || !missing(density)
xy <- xy.coords(x, y)
x <- xy$x
y <- xy$y
nx <- length(x)
if (nx < 1 || nx > 2)
stop("invalid coordinate lengths")
xlog <- par("xlog")
ylog <- par("ylog")
rect2 <- function(left, top, dx, dy, density = NULL, angle,
...) {
r <- left + dx
if (xlog) {
left <- 10^left
r <- 10^r
}
b <- top - dy
if (ylog) {
top <- 10^top
b <- 10^b
}
rect(left, top, r, b, angle = angle, density = density,
...)
}
segments2 <- function(x1, y1, dx, dy, ...) {
x2 <- x1 + dx
if (xlog) {
x1 <- 10^x1
x2 <- 10^x2
}
y2 <- y1 + dy
if (ylog) {
y1 <- 10^y1
y2 <- 10^y2
}
segments(x1, y1, x2, y2, ...)
}
points2 <- function(x, y, ...) {
if (xlog)
x <- 10^x
if (ylog)
y <- 10^y
points(x, y, ...)
}
text2 <- function(x, y, ...) {
if (xlog)
x <- 10^x
if (ylog)
y <- 10^y
text(x, y, ...)
}
if (trace)
catn <- function(...) do.call(cat, c(lapply(list(...),
formatC), list("\n")))
cin <- par("cin")
Cex <- cex * par("cex")
if (is.null(text.width))
text.width <- max(strwidth(legend, units = "user", cex = cex))
else if (!is.numeric(text.width) || text.width < 0)
stop("text.width must be numeric, >= 0")
xc <- Cex * xinch(cin[1], warn.log = FALSE)
yc <- Cex * yinch(cin[2], warn.log = FALSE)
xchar <- xc
yextra <- yc * (y.intersp - 1)
ymax <- max(yc, strheight(legend, units = "user", cex = cex))
ychar <- yextra + ymax
if (trace)
catn(" xchar=", xchar, "; (yextra,ychar)=", c(yextra,
ychar))
if (mfill) {
xbox <- xc * 0.8
ybox <- yc * 0.5
dx.fill <- xbox
}
do.lines <- (!missing(lty) && (is.character(lty) || any(lty >
0))) || !missing(lwd)
n.leg <- if (is.call(legend))
1
else length(legend)
n.legpercol <- if (horiz) {
if (ncol != 1)
warning("horizontal specification overrides: Number of columns := ",
n.leg)
ncol <- n.leg
1
}
else ceiling(n.leg/ncol)
if (has.pch <- !missing(pch) && length(pch) > 0) {
if (is.character(pch) && !is.na(pch[1]) && nchar(pch[1]) >
1) {
if (length(pch) > 1)
warning("Not using pch[2..] since pch[1] has multiple chars")
np <- nchar(pch[1])
pch <- substr(rep.int(pch[1], np), 1:np, 1:np)
}
if (!merge)
dx.pch <- x.intersp/2 * xchar
}
x.off <- if (merge)
-0.7
else 0
if (xlog)
x <- log10(x)
if (ylog)
y <- log10(y)
if (nx == 2) {
x <- sort(x)
y <- sort(y)
left <- x[1]
top <- y[2]
w <- diff(x)
h <- diff(y)
w0 <- w/ncol
x <- mean(x)
y <- mean(y)
if (missing(xjust))
xjust <- 0.5
if (missing(yjust))
yjust <- 0.5
}
else {
h <- n.legpercol * ychar + yc
w0 <- text.width + (x.intersp + 1) * xchar
if (mfill)
w0 <- w0 + dx.fill
if (has.pch && !merge)
w0 <- w0 + dx.pch
if (do.lines)
w0 <- w0 + (2 + x.off) * xchar
w <- ncol * w0 + 0.5 * xchar
left <- x - xjust * w
top <- y + (1 - yjust) * h
}
if (plot && bty != "n") {
if (trace)
catn(" rect2(", left, ",", top, ", w=", w, ", h=",
h, ", ...)", sep = "")
rect2(left, top, dx = w, dy = h, col = bg, density = NULL)
}
xt <- left + xchar + (w0 * rep.int(0:(ncol - 1), rep.int(n.legpercol,
ncol)))[1:n.leg]
yt <- top - (rep.int(1:n.legpercol, ncol)[1:n.leg] - 1) *
ychar - 0.5 * yextra - ymax
if (mfill) {
if (plot) {
fill <- rep(fill, length.out = n.leg)
rect2(left = xt, top = yt + ybox/2, dx = xbox, dy = ybox,
col = fill, density = density, angle = angle,
border = "black")
}
xt <- xt + dx.fill
}
if (plot && (has.pch || do.lines))
col <- rep(col, length.out = n.leg)
if (missing(lwd))
lwd <- par("lwd")
if (do.lines) {
seg.len <- 2
if (missing(lty))
lty <- 1
ok.l <- !is.na(lty) & (is.character(lty) | lty > 0)
lty <- rep(lty, length.out = n.leg)
lwd <- rep(lwd, length.out = n.leg)
if (trace)
catn(" segments2(", xt[ok.l] + x.off * xchar, ",",
yt[ok.l], ", dx=", seg.len * xchar, ", dy=0, ...)")
if (plot)
segments2(xt[ok.l] + x.off * xchar, yt[ok.l], dx = seg.len *
xchar, dy = 0, lty = lty[ok.l], lwd = lwd[ok.l],
col = col[ok.l])
xt <- xt + (seg.len + x.off) * xchar
}
if (has.pch) {
pch <- rep(pch, length.out = n.leg)
pt.bg <- rep(pt.bg, length.out = n.leg)
pt.cex <- rep(pt.cex, length.out = n.leg)
pt.lwd <- rep(pt.lwd, length.out = n.leg)
ok <- !is.na(pch) & (is.character(pch) | pch >= 0)
x1 <- (if (merge)
xt - (seg.len/2) * xchar
else xt)[ok]
y1 <- yt[ok]
if (trace)
catn(" points2(", x1, ",", y1, ", pch=", pch[ok],
", ...)")
if (plot)
points2(x1, y1, pch = pch[ok], col = col[ok], cex = pt.cex[ok],
bg = pt.bg[ok], lwd = pt.lwd[ok])
if (!merge)
xt <- xt + dx.pch
}
xt <- xt + x.intersp * xchar
if (plot)
text2(xt, yt, labels = legend, adj = adj, cex = cex,
col = text.col)
invisible(list(rect = list(w = w, h = h, left = left, top = top),
text = list(x = xt, y = yt)))
}
mt.plot<-function(adjp,teststat, plottype="rvsa",logscale=FALSE,
alpha=seq(0,1,length=100), proc="",leg=c(0,0),...)
{
m<-nrow(adjp)
n<-ncol(adjp)
a<-length(alpha)
if(plottype=="rvsa")
{
r<-mt.reject(adjp,alpha)$r
matplot(alpha,r,xlab="Type I error rate",
ylab="Number of rejected hypotheses", type="l", ...)
mt.legend(leg[1],leg[2],proc,...)
}
if(plottype=="pvsr")
{
spval<-apply(adjp,2,sort)
matplot(1:m,spval,xlab="Number of rejected hypotheses",
ylab="Sorted adjusted p-values", type="l", ...)
mt.legend(leg[1],leg[2],proc,...)
}
if(plottype=="pvst")
{
if(!logscale)
matplot(teststat,adjp,xlab="Test statistics",
ylab="Adjusted p-values", type="p", ...)
if(logscale)
matplot(teststat,-log(adjp,10),xlab="Test statistics",
ylab="-log(adjusted p-values,10)", type="p", ...)
mt.legend(leg[1],leg[2],proc,...)
}
if(plottype=="pvsi")
{
if(!logscale)
matplot(1:m,adjp,xlab="index",ylab="Adjusted p-values", type="l", ...)
if(logscale)
matplot(1:m,-log(adjp,10),xlab="index",
ylab="-log(adjusted p-values,10)", type="l", ...)
mt.legend(leg[1],leg[2],proc,...)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.