Nothing
#' @importFrom utils tail
#' @importFrom parallel detectCores
#' @importFrom parallel makeCluster stopCluster
#' @importFrom parallel parLapply
#' @importFrom ape getMRCA
#' @rdname sitesMinEntropy
#' @title Fixation sites prediction
#' @description After finding the \code{\link{lineagePath}} of a phylogenetic
#' tree, \code{sitesMinEntropy} perform entropy minimization on every site of
#' the sequence to group the tips according to amino acid/nucleotide.
#' @param x A \code{lineagePath} object returned from \code{\link{lineagePath}}
#' function.
#' @param minEffectiveSize The minimum number of tips in a group.
#' @param searchDepth The function uses heuristic search but the termination of
#' the search cannot be intrinsically decided. \code{searchDepth} is needed to
#' tell the search when to stop.
#' @param method The strategy for predicting the fixation. The basic approach is
#' entropy minimization and can be achieved by adding or removing fixation
#' point, or by comparing the two.
#' @param ... further arguments passed to or from other methods.
#' @return A \code{sitesMinEntropy} object.
#' @export
#' @examples
#' data(zikv_tree_reduced)
#' data(zikv_align_reduced)
#' tree <- addMSA(zikv_tree_reduced, alignment = zikv_align_reduced)
#' sitesMinEntropy(lineagePath(tree))
sitesMinEntropy <- function(x, ...) {
UseMethod("sitesMinEntropy")
}
#' @rdname sitesMinEntropy
#' @export
sitesMinEntropy.lineagePath <- function(x,
minEffectiveSize = NULL,
searchDepth = 1,
method = c("compare", "insert", "delete"),
...) {
paths <- .phyMSAmatch(x)
# Set the minimal size of the group during the search
if (is.null(minEffectiveSize)) {
minEffectiveSize <- attr(x, "minSize")
} else if (!is.numeric(minEffectiveSize) ||
minEffectiveSize < 0) {
stop("'minEffectiveSize' (",
minEffectiveSize,
") is not positive numeric")
} else {
minEffectiveSize <- ceiling(minEffectiveSize)
}
# Set the search depth for heuristic search
if (searchDepth < 1) {
stop("'searchDepth' (", searchDepth, ") is less than 1")
} else {
searchDepth <- ceiling(searchDepth)
}
# Decide which minimizing strategy
minimizeEntropy <- switch(
match.arg(method),
"compare" = minEntropyByComparing,
"insert" = minEntropyByInserting,
"delete" = minEntropyByDeleting
)
# Get the divergent nodes
divNodes <- divergentNode(paths)
# The tips and matching
pathNodeTips <- .tipSeqsAlongPathNodes(paths, divNodes)
# In case root node does not have any tips
excludedNodes <- divNodes
rootNode <- attr(paths, "rootNode")
if (!rootNode %in% names(pathNodeTips)) {
excludedNodes <- c(rootNode, excludedNodes)
}
# Exclude the invariant sites
loci <- attr(x, "loci")
# Turn the site number into index for C++ code
siteIndices <- attr(paths, "msaNumbering")[loci] - 1
names(siteIndices) <- as.character(loci)
# Group the result by path for all loci
pathsWithSeqs <- lapply(paths, function(path) {
path <- as.character(setdiff(path, excludedNodes))
names(path) <- path
pathNodeAlign <- pathNodeTips[path]
# The node changed to the previous node if the previous node is the
# divergent node. This is for the mutation labeling
for (currIndex in seq_along(pathNodeAlign)[-1]) {
prevIndex <- currIndex - 1
prevNode <- names(pathNodeAlign)[prevIndex]
if (prevNode %in% divNodes) {
names(pathNodeAlign)[currIndex] <- prevNode
}
}
attr(pathNodeAlign, "pathTipNum") <-
sum(lengths(pathNodeAlign))
return(pathNodeAlign)
})
pathTipNums <-
vapply(pathsWithSeqs, attr, integer(1), "pathTipNum")
# Use the number of tips to order the paths. The path with fewer number of
# tips come first so its result will be prioritize when merging
tipNumRank <- order(pathTipNums)
# The max number of tips a path has
maxPathTipNum <- tail(pathTipNums[tipNumRank], 1)
# Test if multiprocessing is turned on
mc <- getOption("cl.cores")
if (is.null(mc)) {
res <- lapply(
X = pathsWithSeqs[tipNumRank],
FUN = function(pathNodeAlign) {
scaledSize <- attr(pathNodeAlign, "pathTipNum") / maxPathTipNum
# The path with fewer tips will use smaller threshold
scaledSize <- ceiling(minEffectiveSize * scaledSize)
attr(pathNodeAlign, "scaledSize") <- scaledSize
segs <- lapply(
X = siteIndices,
FUN = .runEntropyMinimization,
pathNodeAlign = pathNodeAlign,
minimizeEntropy = minimizeEntropy,
searchDepth = searchDepth
)
attr(segs, "pathNodeTips") <- pathNodeAlign
return(segs)
}
)
# Calibrate the result from all paths
res <- .unifyEntropyGrouping(res, paths, NULL)
# Cluster tips according to fixation sites
clustersByPath <- lapply(res, .clusterByFixation)
} else {
cl <- .createCluster(mc, method = FALSE)
res <- lapply(
X = pathsWithSeqs[tipNumRank],
FUN = function(pathNodeAlign) {
scaledSize <- attr(pathNodeAlign, "pathTipNum") / maxPathTipNum
# The path with fewer tips will use smaller threshold
scaledSize <- ceiling(minEffectiveSize * scaledSize)
attr(pathNodeAlign, "scaledSize") <- scaledSize
# Entropy minimization result for every locus
segs <- parLapply(
cl = cl,
X = siteIndices,
fun = .runEntropyMinimization,
pathNodeAlign = pathNodeAlign,
minimizeEntropy = minimizeEntropy,
searchDepth = searchDepth
)
attr(segs, "pathNodeTips") <- pathNodeAlign
return(segs)
}
)
# Calibrate the result from all paths
res <- .unifyEntropyGrouping(res, paths, cl)
# Cluster tips according to fixation sites
clustersByPath <- parLapply(cl, res, .clusterByFixation)
stopCluster(cl)
cat(paste("Multiprocessing ended.\n"))
}
clustersByPath <- .mergeClusters(clustersByPath)
attr(res, "clustersByPath") <-
.assignClusterNames(clustersByPath)
attr(res, "paths") <- paths
class(res) <- "sitesMinEntropy"
return(res)
}
.runEntropyMinimization <- function(siteIndex,
pathNodeAlign,
minimizeEntropy,
searchDepth) {
minEffectiveSize <- attr(pathNodeAlign, "scaledSize")
# Assign a variable to store the tip names and their info on amino acids.
# They are the potential fixation segment
nodeTips <- integer()
previousAA <- NULL
currentAA <- NULL
previousNode <- NULL
# The input for entropy minimization calculation
nodeSummaries <- list()
# Divergent nodes are not included anywhere in the result
for (node in names(pathNodeAlign)) {
# Get the related descendant tips and related sequences
nodeTips <- pathNodeAlign[[node]]
# Frequency of the amino acids at the locus
aaSummary <- tableAA(attr(nodeTips, "align"), siteIndex)
# Associate the amino acid frequency with the tip names
attr(nodeTips, "aaSummary") <- aaSummary
# Decide the current fixed amino acid
if (length(aaSummary) == 1) {
currentAA <- names(aaSummary)
} else {
currentAA <- NULL
}
# Attach the node to the previous node if they're both purely fixed and
# have the same AA fixed.
if (!is.null(previousAA) &&
!is.null(currentAA) &&
previousAA == currentAA) {
node <- previousNode
# Combine the tips in the previous node
nodeTips <- c(nodeSummaries[[node]], nodeTips)
# Add up the amino acid frequency
attr(nodeTips, "aaSummary") <-
attr(nodeSummaries[[node]], "aaSummary") +
aaSummary
# R uses the name of the first vector variable when adding two
# numeric vectors. So there is no need for names (AA) assignment
}
# Assign or re-assign the 'nodeTips' with 'aaSummary' to the
# 'nodeSummaries'
nodeSummaries[[node]] <- nodeTips
previousAA <- currentAA
previousNode <- node
}
# Return empty value if the site is purely fixed on the lineage
if (length(nodeSummaries) >= 2) {
seg <- minimizeEntropy(nodeSummaries,
minEffectiveSize,
searchDepth)
names(seg) <- vapply(seg, attr, character(1), "node")
} else {
seg <- nodeSummaries
attr(seg[[1]], "AA") <- names(attr(seg[[1]], "aaSummary"))
attr(seg[[1]], "node") <- names(seg)
}
return(seg)
}
.unifyEntropyGrouping <- function(res, paths, cl) {
align <- attr(paths, "align")
if (is.null(cl)) {
allMergedGroupings <- lapply(
X = names(res[[1]]),
FUN = .calibrateFixedAA,
fixations = res,
align = align
)
} else {
allMergedGroupings <- parLapply(
cl = cl,
X = names(res[[1]]),
fun = .calibrateFixedAA,
fixations = res,
align = align
)
}
names(allMergedGroupings) <- names(res[[1]])
# Iterate each locus
for (locus in names(res[[1]])) {
# The index for C++
locusIndex <- as.integer(locus) - 1
# Get the merged groupings of each path for the locus
mergedGroupings <- allMergedGroupings[[locus]]
# Link the merged groupings for each lineage path to calibrate and
# recover the full groupings. The linked merged groupings are stored for
# the remaining paths.
linkedMerged <- list()
for (pathIndex in seq_along(mergedGroupings)) {
currLinked <- .findGroupingLinkage(
pathIndex = pathIndex,
mergedGroupings = mergedGroupings,
linkedMerged = linkedMerged
)
# Store the linked groupings back tracing to the root for the
# remaining groupings
linkedMerged <- c(linkedMerged, list(currLinked))
# The merged result for the current grouping needs to be included
# for reconstructing but not needed for other groupings
currLinked[[pathIndex]] <- mergedGroupings[[pathIndex]]
# Make the tips clusters into one list
currLinked <- currLinked[which(lengths(currLinked) > 0)]
currLinked <- unlist(currLinked, recursive = FALSE)
# Reconstruct the grouping of the path
reconstructed <- list()
clusterNodes <- character()
prevGP <- currLinked[[1]]
for (gpIndex in seq_along(currLinked)[-1]) {
currGP <- currLinked[[gpIndex]]
if (attr(prevGP, "AA") == attr(currGP, "AA")) {
currGP <- c(prevGP, currGP)
attr(currGP, "aaSummary") <-
tableAA(align[currGP], locusIndex)
attr(currGP, "AA") <- attr(prevGP, "AA")
attr(currGP, "node") <- attr(prevGP, "node")
} else {
# Add a new tip cluster only when there is a change of fixed
# amino acid/nucleotide
reconstructed <- c(reconstructed, list(prevGP))
clusterNodes <-
c(clusterNodes, attr(prevGP, "node"))
}
prevGP <- currGP
}
reconstructed <- c(reconstructed, list(prevGP))
clusterNodes <- c(clusterNodes, attr(prevGP, "node"))
# Re-assign the merged result to the original
names(reconstructed) <- clusterNodes
res[[pathIndex]][[locus]] <- reconstructed
}
}
return(res)
}
.calibrateFixedAA <- function(locus, fixations, align) {
# The original entropy minimization result for the locus
unMergedGroupings <- lapply(fixations, function(segs) {
res <- segs[[locus]]
attr(res, "pathNodeTips") <- attr(segs, "pathNodeTips")
return(res)
})
# Calibrate the tip grouping result from all result
res <- .mergeClusters(unMergedGroupings)
locusIndex <- as.integer(locus) - 1
toMergePrevAA <- character()
# Special case when the root group is the divergent point
tips <- res[[1]][[1]]
# The dominant 'AA' of all direct descendant tip groups
if (!is.null(attr(tips, "toMerge"))) {
refAA <- unique(vapply(unMergedGroupings, function(seg) {
return(attr(seg[[1]], "AA"))
}, character(1)))
aaSummary <- tableAA(align[tips], locusIndex)
toMergePrevAA[1] <- refAA[1]
if (any(names(aaSummary) %in% refAA)) {
toMergePrevAA[1] <- names(which.max(aaSummary[refAA]))
}
attr(res[[1]][[1]], "AA") <- toMergePrevAA[1]
}
for (pathIndex in seq_along(res)) {
mGrouping <- res[[pathIndex]]
# Iterate to find the tip groups at divergent point and find the most
# fitting amino acid/nucleotide
for (gIndex in seq_along(mGrouping)) {
tips <- mGrouping[[gIndex]]
toMerge <- attr(tips, "toMerge")
if (!is.null(toMerge)) {
otherIndex <- as.integer(names(toMerge))
toMergePrevAA[otherIndex] <- attr(tips, "AA")
# Calibrate the fixed amino acid/nucleotide at the divergent
# point after merging
originalAA <- vapply(
X = unMergedGroupings[otherIndex],
FUN = function(seg) {
majorFixedAA <- character()
maxOverlapNum <- 0
# To find the fixed amino acid/nucleotide from the
# original entropy minimum result for each path
for (original in seg) {
overlapNum <- intersect(tips, original)
if (length(overlapNum) > maxOverlapNum) {
majorFixedAA <- attr(original, "AA")
maxOverlapNum <- length(overlapNum)
}
}
return(majorFixedAA)
},
FUN.VALUE = character(1)
)
# All originally assigned 'AA' for the current tip group
refAA <- unique(c(attr(tips, "AA"), originalAA))
# In case there is a disagreement between the paths
if (length(refAA) > 1) {
# The remaining tips of the group split at the divergent
# point on the current and other paths
nextTips <- mGrouping[[gIndex + 1]]
nextFixedAA <- attr(nextTips, "AA")
for (toMergeIndex in otherIndex) {
otherTips <- res[[toMergeIndex]][[1]]
nextFixedAA <- c(nextFixedAA,
attr(otherTips, "AA"))
}
# The fixed amino acid/nucleotide in the divergent point
# that does not come from the splitting of the following tip
# groups but is rather related to the previous tip group
extraFixedAA <- setdiff(refAA, nextFixedAA)
if (length(extraFixedAA) > 1) {
# This might be quite impossible but just in case
refAA <- extraFixedAA[1]
} else if (length(extraFixedAA) == 0) {
if (gIndex == 1) {
# The previous 'AA' of the first group (after
# merging) is a little tricky to find
refAA <- toMergePrevAA[pathIndex]
} else {
prevTips <- mGrouping[[gIndex - 1]]
aaSummary <-
tableAA(align[c(tips, prevTips)], locusIndex)
consistentAA <-
intersect(refAA, names(aaSummary))
if (length(consistentAA) == 0) {
# The previous fixed amino acid/nucleotide
refAA <- attr(prevTips, "AA")
} else if (length(consistentAA) > 1) {
# The dominant amino acid/nucleotide
refAA <-
names(which.max(aaSummary[refAA]))
} else {
refAA <- consistentAA
}
}
} else {
refAA <- extraFixedAA
}
}
attr(res[[pathIndex]][[gIndex]], "AA") <- refAA
}
}
}
return(res)
}
.findGroupingLinkage <- function(pathIndex,
mergedGroupings,
linkedMerged) {
# The linked groupings for the current path The index of an irrelevant path
# will hold a NULL while the index of a relevant path will hold the grouping
# up till the tip cluster with the 'toMerge' index indicating the divergent
# point.
currLinked <- rep(list(), len = pathIndex)
# Iterate the merged grouping of each path to find the 'toMerge' index same
# as the current path index
for (mergedIndex in seq_along(linkedMerged)) {
# The merged grouping that has no overlap
mGrouping <- mergedGroupings[[mergedIndex]]
# Iterate each tip cluster in the merged grouping
for (gIndex in seq_along(mGrouping)) {
tips <- mGrouping[[gIndex]]
toMergeIndex <- as.integer(names(attr(tips, "toMerge")))
# Trace back to the root when the path index of current grouping
# is found in 'toMergeIndex'
if (pathIndex %in% toMergeIndex) {
# The linked merged groupings trace back to the root
currLinked <- linkedMerged[[mergedIndex]]
# Attach the index that directly links to the current grouping
currLinked[[mergedIndex]] <-
mGrouping[seq_len(gIndex)]
# The result of the groups and grouping will be ignored as there
# could only be one relevant divergent point
return(currLinked)
}
}
}
return(currLinked)
}
.clusterByFixation <- function(segs) {
# Set the site and amino acid/nucleotide info for each group of tips
group <- lapply(names(segs), function(site) {
lapply(segs[[site]], function(tips) {
siteChar <- attr(tips, "AA")
names(siteChar) <- site
node <- attr(tips, "node")
# Purge the attributes and keep only the node and amino
# acid/nucleotide info
attributes(tips) <- NULL
attr(tips, "AA") <- siteChar
attr(tips, "node") <- node
return(tips)
})
})
# This will group the tips of the lineage path and the adjacent groups will
# have at least one fixed site different Group tips according to fixation
# points
res <- group[[1]]
for (seg in group[-1]) {
# the node name for each group of tips
nodeNames <- names(seg)
# Iterate each group of tips to contribute to grouping
for (n in seq_along(seg)) {
tips <- seg[[n]]
# The site number and its amino acid/nucleotide
site <- attr(tips, "AA")
# Update grouping for each tips by growing a new list
newGrouping <- list()
# Compare with each group of the current grouping
for (i in seq_along(res)) {
gp <- res[[i]]
common <- sort.default(intersect(tips, gp))
# No new cluster when the coming tips have no overlap or are
# identical to tips in an existing cluster
if (length(common) == 0) {
# Keep the current grouping if the coming group has no
# overlap yet
newGrouping <- res[seq_len(i)]
} else if (identical(sort.default(gp), sort.default(tips))) {
# The only effect here is to add the new 'AA' info to the
# group
attr(gp, "AA") <- c(attr(gp, "AA"), site)
# The groups after the current group to be added
newGrouping <- c(newGrouping,
list(gp),
tail(res, length(res) - i))
break
} else {
common <- sort.default(common)
# A new cluster formed when there is overlapped between new
# coming tips and existing tips in a cluster
if (identical(sort.default(gp), common)) {
# The new coming tips includes the current group. The
# extra tips stay for the next loop just in case it has
# impact on the grouping
tips <- setdiff(tips, gp)
# Update the SNP site info for the current group
attr(gp, "AA") <- c(attr(gp, "AA"), site)
newGrouping <- c(newGrouping, list(gp))
} else if (identical(sort.default(tips), common)) {
# The new coming tips are included in the group (they
# are used up at this point) and they split the original
# grouping
separate <- setdiff(gp, tips)
attributes(separate) <- attributes(gp)
attr(separate, "node") <- nodeNames[n + 1]
# 'tips' is the common part and inherit the attributes
# of the to-be-split original group
attr(tips, "AA") <- c(attr(gp, "AA"), site)
attr(tips, "node") <- attr(gp, "node")
newGrouping <- c(
newGrouping,
list(tips),
list(separate),
tail(res, length(res) - i)
)
# Go for the next new coming tips
break
} else {
stop("Something's not right")
}
}
}
# The new coming tips are used up and update the grouping
res <- newGrouping
}
}
attr(res, "pathNodeTips") <- attr(segs, "pathNodeTips")
return(res)
}
.mergeClusters <- function(clustersByPath) {
# 'res' stores all the non-overlapped parts which means all the clusters are
# unique but it still splits into each path
res <- list(clustersByPath[[1]])
# Find the divergent point and remove the overlapped part
for (gpIndex in seq_along(clustersByPath)[-1]) {
# 'gp' is the complete path with overlapped parts
gp <- clustersByPath[[gpIndex]]
# Assume there is no overlapped tips
t <- integer()
# The index of 'res' which to merge with 'gp'
toMergeIndex <- NULL
# The index of 'gp' where the divergent point is. Each truncated 'gp' in
# 'res' will have one but only the deepest will be used
divergedIndex <- 0L
# The number of shared tips at divergent point will be used to decide if
# the two clusters are completely diverged or not
sharedAtDiv <- integer()
# Loop through 'res' to find the most related group ('res' is changed
# after each iteration)
for (i in seq_along(res)) {
# All existing tips in another 'gp' to see if overlapped with tips
# in the 'gp' to be merged
allTips <- unlist(clustersByPath[[i]])
# Because all the tip groups are unique in 'res', the first cluster
# in 'gp' containing tips that cannot be found is the divergent
# point
for (j in seq_along(gp)) {
# Once a potential divergent point having being found (the tip
# cluster in 'gp' containing cannot-be-found tips), safeguard
# the current 'gp' have actual overlap with all tips in 'res'
# with index 'j'
if (any(!gp[[j]] %in% allTips) &&
any(unlist(gp) %in% unlist(res[[i]]))) {
t <- intersect(gp[[j]], allTips)
# The deepest and most divergent point, which is decided by
# the index. When the index is the same as the previous one,
# chose the one with more shared tips
if (j > divergedIndex ||
(j == divergedIndex &&
length(t) >= length(sharedAtDiv))) {
toMergeIndex <- i
divergedIndex <- j
sharedAtDiv <- t
}
break
}
}
}
# Find the tips when diverged
divergedTips <- gp[[divergedIndex]]
tempAttrs <- attributes(divergedTips)
# The non-shared part of the 'divergedTips'. This part will not be empty
divergedTips <- setdiff(divergedTips,
unlist(clustersByPath[[toMergeIndex]]))
attributes(divergedTips) <- tempAttrs
# Re-assign the ancestral node since the tip group is split
pathNodeTips <- attr(gp, "pathNodeTips")
attr(divergedTips, "node") <- .calibrateNode(divergedTips,
pathNodeTips)
refSites <- attr(divergedTips, "AA")
# Add the truncated 'gp' (no overlap) to 'res'
if (divergedIndex == length(gp)) {
# No more trailing tips besides the non-shared part
res[[gpIndex]] <- list(divergedTips)
} else {
# Non-shared part plus the trailing part
res[[gpIndex]] <- c(list(divergedTips),
gp[(divergedIndex + 1):length(gp)])
}
# Find the most related group of 'gp' in 'res'
toMerge <- res[[toMergeIndex]]
# To determine where to add the new group (truncated 'gp'). This wasn't
# done above just in case the merged part might not be the same for the
# two paths
gpTips <- unlist(gp)
for (i in seq_along(toMerge)) {
# The divergent point of the most related group in 'res', which
# might already be different from the original 'gp'
if (any(!toMerge[[i]] %in% gpTips)) {
# The non-shared part
divergedTips <- setdiff(toMerge[[i]], gpTips)
# Give back the attributes, including fixation site and possible
# merging info
attributes(divergedTips) <- attributes(toMerge[[i]])
# Re-assign the ancestral node since the tip group is split
pathNodeTips <- attr(clustersByPath[[toMergeIndex]],
"pathNodeTips")
attr(divergedTips, "node") <-
.calibrateNode(divergedTips, pathNodeTips)
# The shared part
sharedTips <- setdiff(toMerge[[i]], divergedTips)
toMergeRefSites <- list()
toMergeRefSites[[as.character(gpIndex)]] <- refSites
if (length(sharedTips) == 0) {
# There is at least one group of tips before divergence
attr(toMerge[[i - 1]], "toMerge") <-
c(toMergeRefSites,
attr(toMerge[[i - 1]], "toMerge"))
sharedTips <- list()
} else {
# When 'sharedTips' is not empty, the site and node should
# be the only info to give back to
attributes(sharedTips) <-
attributes(toMerge[[i]])
# The original 'toMerge' info should be taken by the
# 'divergedTips'
attr(sharedTips, "toMerge") <- toMergeRefSites
sharedTips <- list(sharedTips)
}
# The divergent part
if (i == length(toMerge)) {
# No more trailing tips besides the non-shared part
divergedTips <- list(divergedTips)
} else {
# Non-shared part plus the trailing part
divergedTips <- c(list(divergedTips),
toMerge[(i + 1):length(toMerge)])
}
# Reform the most related group because the divergent tips might
# be split
res[[toMergeIndex]] <- c(toMerge[seq_len(i - 1)],
sharedTips,
divergedTips)
break
}
}
}
return(res)
}
.calibrateNode <- function(divergedTips, pathNodeTips) {
# Just in case the ancestral node is not found
notFound <- TRUE
for (node in names(pathNodeTips)) {
if (all(pathNodeTips[[node]] %in% divergedTips)) {
return(node)
}
}
if (notFound) {
stop("Something is wrong finding the ancestral node")
}
}
.assignClusterNames <- function(grouping) {
# The starting major numbers of all 'gp' in 'grouping' (becasue they were
# grouped according to lineage path to deal with the shared lineage)
startingMajors <- rep(NA_integer_, length(grouping))
startingMajors[1] <- 1L
# The maximum minor number for each major number (so can be continued on a
# new 'gp')
maxMinors <- 0L
# Iterate 'grouping' to assign cluster number
for (i in seq_along(grouping)) {
# Get the starting major number
currMajor <- startingMajors[i]
# Increase the maximum minor number for 'currMajor'
maxMinors[currMajor] <- maxMinors[currMajor] + 1L
# Initiate mini number
currMini <- 1L
for (j in seq_along(grouping[[i]])) {
attr(grouping[[i]][[j]], "clsName") <- paste(currMajor,
maxMinors[currMajor],
currMini,
sep = ".")
currMini <- currMini + 1
toMerge <- attr(grouping[[i]][[j]], "toMerge")
if (!is.null(toMerge)) {
# Create a new major number when encounter a divergent point
currMajor <- currMajor + 1L
# Reset mini number
currMini <- 1L
nextMajor <- currMajor
# Assign the starting major number for the 'gp' to be merged
toMergeIndex <- as.integer(names(toMerge))
startingMajors[toMergeIndex] <- rep(nextMajor,
length(toMergeIndex))
# Initiate minor number for the new major number
if (is.na(maxMinors[nextMajor])) {
maxMinors[nextMajor] <- 1L
} else {
maxMinors[nextMajor] <- maxMinors[nextMajor] + 1L
}
}
}
}
return(grouping)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.