Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/enrich_motifs.R
Given a set of target and background sequences, test if the input motifs are significantly enriched in the targets sequences relative to the background sequences. See the "Sequence manipulation and scanning" vignette.
1 2 3 4 5 6 | enrich_motifs(motifs, sequences, bkg.sequences, max.p = 1e-05,
max.q = 1e-05, max.e = 0.001, qval.method = "fdr", threshold = 0.001,
threshold.type = "pvalue", verbose = 0, RC = FALSE, use.freq = 1,
shuffle.k = 2, shuffle.method = "euler", return.scan.results = FALSE,
nthreads = 1, rng.seed = sample.int(10000, 1), motif_pvalue.k = 8,
use.gaps = TRUE, allow.nonfinite = FALSE, warn.NA = TRUE)
|
motifs |
See |
sequences |
|
bkg.sequences |
|
max.p |
|
max.q |
|
max.e |
|
qval.method |
|
threshold |
|
threshold.type |
|
verbose |
|
RC |
|
use.freq |
|
shuffle.k |
|
shuffle.method |
|
return.scan.results |
|
nthreads |
|
rng.seed |
|
motif_pvalue.k |
|
use.gaps |
|
allow.nonfinite |
|
warn.NA |
|
To find enriched motifs, scan_sequences()
is run on both
target and background sequences.
stats::fisher.test()
is run to test for enrichment.
See scan_sequences()
for more info on scanning parameters.
DataFrame
Enrichment results in a DataFrame
. Function args and
(optionally) scan results are stored in the metadata
slot.
Benjamin Jean-Marie Tremblay b2tremblay@uwaterloo.ca
meme2universalmotif
scan_sequences()
, shuffle_sequences()
,
add_multifreq()
, motif_pvalue()
1 2 3 4 5 | data(ArabidopsisPromoters)
data(ArabidopsisMotif)
if (R.Version()$arch != "i386") {
enrich_motifs(ArabidopsisMotif, ArabidopsisPromoters, threshold = 0.01)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.