Nothing
## Methods for the XCMSnExp object representing untargeted metabolomics
## results
#' @include functions-XCMSnExp.R do_groupChromPeaks-functions.R functions-utils.R
#' do_adjustRtime-functions.R methods-xcmsRaw.R functions-OnDiskMSnExp.R
setMethod("initialize", "XCMSnExp", function(.Object, ...) {
classVersion(.Object)["XCMSnExp"] <- "0.0.1"
.Object <- callNextMethod(.Object, ...)
lockEnvironment(.Object@msFeatureData)
return(.Object)
})
#' @aliases show,MsFeatureData-method
#'
#' @rdname XCMSnExp-class
setMethod("show", "XCMSnExp", function(object) {
callNextMethod()
cat("- - - xcms preprocessing - - -\n")
if (hasChromPeaks(object)) {
cat("Chromatographic peak detection:\n")
ph <- processHistory(object, type = .PROCSTEP.PEAK.DETECTION)
if (length(ph))
cat(" method:", .param2string(ph[[1]]@param), "\n")
else cat(" unknown method.\n")
cat(" ", nrow(chromPeaks(object)), " peaks identified in ",
length(fileNames(object)), " samples.\n", sep = "")
cat(" On average ",
format(mean(table(chromPeaks(object)[, "sample"])), digits = 3),
" chromatographic peaks per sample.\n", sep = "")
}
if (hasAdjustedRtime(object)) {
cat("Alignment/retention time adjustment:\n")
ph <- processHistory(object, type = .PROCSTEP.RTIME.CORRECTION)
if (length(ph))
cat(" method:", .param2string(ph[[1]]@param), "\n")
else cat(" unknown method.\n")
}
if (hasFeatures(object)) {
cat("Correspondence:\n")
ph <- processHistory(object, type = .PROCSTEP.PEAK.GROUPING)
if (length(ph))
cat(" method:", .param2string(ph[[1]]@param), "\n")
else cat(" unknown method.\n")
cat(" ", nrow(featureDefinitions(object)), " features identified.\n",
sep = "")
cat(" Median mz range of features: ",
format(median(featureDefinitions(object)[, "mzmax"] -
featureDefinitions(object)[, "mzmin"]), digits = 5),
"\n", sep = "")
cat(" Median rt range of features: ",
format(median(featureDefinitions(object)[, "rtmax"] -
featureDefinitions(object)[, "rtmin"]), digits = 5),
"\n", sep = "")
if (.hasFilledPeaks(object)) {
fp <- chromPeaks(object)[chromPeakData(object)$is_filled, ,
drop = FALSE]
cat("", sum(chromPeakData(object)$is_filled),
"filled peaks (on average",
mean(table(fp[, "sample"])), "per sample).\n")
}
}
})
#' @aliases hasAdjustedRtime hasAdjustedRtime,MsFeatureData-method hasAdjustedRtime,OnDiskMSnExp-method
#'
#' @description
#'
#' \code{hasAdjustedRtime}: whether the object provides adjusted
#' retention times.
#'
#' @rdname XCMSnExp-class
setMethod("hasAdjustedRtime", "XCMSnExp", function(object) {
hasAdjustedRtime(object@msFeatureData)
})
#' @aliases hasFeatures hasFeatures,MsFeatureData-method
#'
#' @description
#'
#' \code{hasFeatures}: whether the object contains correspondence
#' results (i.e. features).
#'
#' @rdname XCMSnExp-class
setMethod("hasFeatures", "XCMSnExp", function(object, msLevel = integer()) {
hasFeatures(object@msFeatureData, msLevel = msLevel)
})
#' @aliases hasChromPeaks hasChromPeaks,MsFeatureData-method
#'
#' @description
#'
#' \code{hasChromPeaks}: whether the object contains peak
#' detection results.
#'
#' @rdname XCMSnExp-class
setMethod("hasChromPeaks", "XCMSnExp", function(object, msLevel = integer()) {
hasChromPeaks(object@msFeatureData, msLevel = msLevel)
})
#' @aliases hasFilledChromPeaks
#'
#' @description
#'
#' \code{hasFilledChromPeaks}: whether the object contains any filled-in
#' chromatographic peaks.
#'
#' @rdname XCMSnExp-class
setMethod("hasFilledChromPeaks", "XCMSnExp", function(object) {
.hasFilledPeaks(object)
})
#' @aliases adjustedRtime adjustedRtime,MsFeatureData-method
#'
#' @description
#'
#' \code{adjustedRtime},\code{adjustedRtime<-}:
#' extract/set adjusted retention times. \code{adjustedRtime<-} should not
#' be called manually, it is called internally by the
#' \code{\link{adjustRtime}} methods. For \code{XCMSnExp} objects,
#' \code{adjustedRtime<-} does also apply retention time adjustments to
#' eventually present chromatographic peaks. The \code{bySample} parameter
#' allows to specify whether the adjusted retention time should be grouped
#' by sample (file).
#'
#' @return
#'
#' For \code{adjustedRtime}: if \code{bySample = FALSE} a \code{numeric}
#' vector with the adjusted retention for each spectrum of all files/samples
#' within the object. If \code{bySample = TRUE } a \code{list} (length equal
#' to the number of samples) with adjusted retention times grouped by
#' sample. Returns \code{NULL} if no adjusted retention times are present.
#'
#' @rdname XCMSnExp-class
setMethod("adjustedRtime", "XCMSnExp", function(object, bySample = FALSE) {
res <- adjustedRtime(object@msFeatureData)
if (length(res) == 0)
return(res)
## Adjusted retention time is a list of retention times.
if (!bySample) {
## Have to re-order the adjusted retention times by spectrum name, such
## that rtime are.
res <- unlist(res, use.names = FALSE)
sNames <- unlist(split(featureNames(object),
as.factor(fromFile(object))),
use.names = FALSE)
names(res) <- sNames
res <- res[featureNames(object)]
}
return(res)
})
#' @aliases adjustedRtime<- adjustedRtime<-,MsFeatureData-method
#'
#' @rdname XCMSnExp-class
setReplaceMethod("adjustedRtime", "XCMSnExp", function(object, value) {
if (!is.list(value))
stop("'value' is supposed to be a list of retention time values!")
if (hasAdjustedRtime(object))
object <- dropAdjustedRtime(object)
## Check if we have some unsorted retention times (issue #146)
unsorted <- unlist(lapply(value, is.unsorted), use.names = FALSE)
if (any(unsorted))
warning("Adjusted retention times for file(s) ",
paste(basename(fileNames(object)[unsorted]), collapse = ", "),
" not sorted increasingly.")
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
adjustedRtime(newFd) <- value
if (hasChromPeaks(newFd)) {
## Change also the retention times reported in the peak matrix.
if (length(value) != length(rtime(object, bySample = TRUE)))
stop("The length of 'value' has to match the number of samples!")
message("Applying retention time adjustment to the identified",
" chromatographic peaks ... ", appendLF = FALSE)
fts <- .applyRtAdjToChromPeaks(chromPeaks(newFd),
rtraw = rtime(object, bySample = TRUE),
rtadj = value)
## Calling this on the MsFeatureData to avoid all results being removed
## again by the chromPeaks<- method.
chromPeaks(newFd) <- fts
message("OK")
}
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
validObject(object)
object
})
#' @aliases featureDefinitions featureDefinitions,MsFeatureData-method
#'
#' @description
#'
#' \code{featureDefinitions}, \code{featureDefinitions<-}: extract
#' or set the correspondence results, i.e. the mz-rt features (peak groups).
#' Similar to the \code{chromPeaks} it is possible to extract features for
#' specified m/z and/or rt ranges. The function supports also the parameter
#' \code{type} that allows to specify which features to be returned if any
#' of \code{rt} or \code{mz} is specified. For details see help of
#' \code{chromPeaks}.
#' See also \code{\link{featureSummary}} for a function to calculate simple
#' feature summaries.
#'
#' @return
#'
#' For \code{featureDefinitions}: a \code{DataFrame} with peak grouping
#' information, each row corresponding to one mz-rt feature (grouped peaks
#' within and across samples) and columns \code{"mzmed"} (median mz value),
#' \code{"mzmin"} (minimal mz value), \code{"mzmax"} (maximum mz value),
#' \code{"rtmed"} (median retention time), \code{"rtmin"} (minimal retention
#' time), \code{"rtmax"} (maximal retention time) and \code{"peakidx"}.
#' Column \code{"peakidx"} contains a \code{list} with indices of
#' chromatographic peaks (rows) in the matrix returned by the
#' \code{chromPeaks} method that belong to that feature group. The method
#' returns \code{NULL} if no feature definitions are present.
#'
#' @rdname XCMSnExp-class
setMethod("featureDefinitions", "XCMSnExp",
function(object, mz = numeric(), rt = numeric(), ppm = 0,
type = c("any", "within", "apex_within"),
msLevel = integer()) {
feat_def <- featureDefinitions(object@msFeatureData,
msLevel = msLevel)
type <- match.arg(type)
## Select features within rt range.
if (length(rt) && nrow(feat_def)) {
rt <- range(rt)
if (type == "any")
keep <- which(feat_def$rtmin <= rt[2] &
feat_def$rtmax >= rt[1])
if (type == "within")
keep <- which(feat_def$rtmin >= rt[1] &
feat_def$rtmax <= rt[2])
if (type == "apex_within")
keep <- which(feat_def$rtmed >= rt[1] &
feat_def$rtmed <= rt[2])
feat_def <- feat_def[keep, , drop = FALSE]
}
## Select peaks within mz range, considering also ppm
if (length(mz) && nrow(feat_def)) {
mz <- range(mz)
## Increase mz by ppm.
if (is.finite(mz[1]))
mz[1] <- mz[1] - mz[1] * ppm / 1e6
if (is.finite(mz[2]))
mz[2] <- mz[2] + mz[2] * ppm / 1e6
if (type == "any")
keep <- which(feat_def$mzmin <= mz[2] &
feat_def$mzmax >= mz[1])
if (type == "within")
keep <- which(feat_def$mzmin >= mz[1] &
feat_def$mzmax <= mz[2])
if (type == "apex_within")
keep <- which(feat_def$mzmed >= mz[1] &
feat_def$mzmed <= mz[2])
feat_def <- feat_def[keep, , drop = FALSE]
}
feat_def
})
#' @aliases featureDefinitions<- featureDefinitions<-,MsFeatureData-method
#'
#' @rdname XCMSnExp-class
setReplaceMethod("featureDefinitions", "XCMSnExp", function(object, value) {
## if (hasFeatures(object))
## object <- dropFeatureDefinitions(object)
newFd <- new("MsFeatureData")
newFd@.xData <- xcms:::.copy_env(object@msFeatureData)
featureDefinitions(newFd) <- value
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
validObject(object)
object
})
#' @aliases chromPeaks chromPeaks,MsFeatureData-method chromPeakData,MsFeatureData-method chromPeakData
#'
#' @description
#'
#' \code{chromPeaks}, \code{chromPeaks<-}: extract or set
#' the matrix containing the information on identified chromatographic
#' peaks. Rownames of the matrix represent unique IDs of the respective peaks
#' within the experiment.
#' Parameter \code{bySample} allows to specify whether peaks should
#' be returned ungrouped (default \code{bySample = FALSE}) or grouped by
#' sample (\code{bySample = TRUE}). The \code{chromPeaks<-} method for
#' \code{XCMSnExp} objects removes also all correspondence (peak grouping)
#' and retention time correction (alignment) results. The optional
#' arguments \code{rt}, \code{mz}, \code{ppm} and \code{type} allow to extract
#' only chromatographic peaks overlapping the defined retention time and/or
#' m/z ranges. Argument \code{type} allows to define how \emph{overlapping} is
#' determined: for \code{type == "any"} (the default), all peaks that are even
#' partially overlapping the region are returned, for \code{type == "within"}
#' the full peak has to be within the region and for
#' \code{type == "apex_within"} the peak's apex position (highest signal of the
#' peak) has to be within the region.
#' See description of the return value for details on the returned matrix.
#' Users usually don't have to use the \code{chromPeaks<-} method directly
#' as detected chromatographic peaks are added to the object by the
#' \code{\link{findChromPeaks}} method. Also, \code{chromPeaks<-} will replace
#' any existing \code{chromPeakData}.
#'
#' \code{chromPeakData} and \code{chromPeakData<-} allow to get or set arbitrary
#' chromatographic peak annotations. These are returned or ar returned as a
#' \code{DataFrame}. Note that the number of rows and the rownames of the
#' \code{DataFrame} have to match those of \code{chromPeaks}.
#'
#' @param rt optional \code{numeric(2)} defining the retention time range for
#' which chromatographic peaks should be returned.
#'
#' @param mz optional \code{numeric(2)} defining the mz range for which
#' chromatographic peaks should be returned.
#'
#' @param ppm optional \code{numeric(1)} specifying the ppm by which the
#' \code{mz} range should be extended. For a value of \code{ppm = 10}, all
#' peaks within \code{mz[1] - ppm / 1e6} and \code{mz[2] + ppm / 1e6} are
#' returned.
#'
#' @param msLevel \code{integer} specifying the MS level(s) for which identified
#' chromatographic peaks should be returned.
#'
#' @param isFilledColumn \code{logical(1)} whether a column \code{"is_filled"}
#' is included in the returned \code{"matrix"} providing the information
#' if a peak was filled in. Alternatively, this information would be
#' provided by the \code{chromPeakData} data frame.
#'
#' @return
#'
#' For \code{chromPeaks}: if \code{bySample = FALSE} a \code{matrix} (each row
#' being a chromatographic peak, rownames representing unique IDs of the peaks)
#' with at least the following columns:
#' \code{"mz"} (intensity-weighted mean of mz values of the peak across
#' scans/retention times),
#' \code{"mzmin"} (minimal mz value),
#' \code{"mzmax"} (maximal mz value),
#' \code{"rt"} (retention time of the peak apex),
#' \code{"rtmin"} (minimal retention time),
#' \code{"rtmax"} (maximal retention time),
#' \code{"into"} (integrated, original, intensity of the peak),
#' \code{"maxo"} (maximum intentity of the peak),
#' \code{"sample"} (sample index in which the peak was identified) and
#' Depending on the employed peak detection algorithm and the
#' \code{verboseColumns} parameter of it, additional columns might be
#' returned. If parameter \code{isFilledColumn} was set to \code{TRUE} a column
#' named \code{"is_filled"} is also returned.
#' For \code{bySample = TRUE} the chromatographic peaks are
#' returned as a \code{list} of matrices, each containing the
#' chromatographic peaks of a specific sample. For samples in which no
#' peaks were detected a matrix with 0 rows is returned.
#'
#' @rdname XCMSnExp-class
setMethod("chromPeaks", "XCMSnExp", function(object, bySample = FALSE,
rt = numeric(), mz = numeric(),
ppm = 0, msLevel = integer(),
type = c("any", "within",
"apex_within"),
isFilledColumn = FALSE) {
type <- match.arg(type)
pks <- chromPeaks(object@msFeatureData)
if (isFilledColumn)
pks <- cbind(pks, is_filled = as.numeric(chromPeakData(object)$is_filled))
if (length(msLevel))
pks <- pks[which(chromPeakData(object)$ms_level %in% msLevel), ,
drop = FALSE]
## Select peaks within rt range.
if (length(rt)) {
rt <- range(rt)
if (type == "any")
keep <- which(pks[, "rtmin"] <= rt[2] & pks[, "rtmax"] >= rt[1])
if (type == "within")
keep <- which(pks[, "rtmin"] >= rt[1] & pks[, "rtmax"] <= rt[2])
if (type == "apex_within")
keep <- which(pks[, "rt"] >= rt[1] & pks[, "rt"] <= rt[2])
pks <- pks[keep, , drop = FALSE]
}
## Select peaks within mz range, considering also ppm
if (length(mz) && length(pks)) {
mz <- range(mz)
## Increase mz by ppm.
if (is.finite(mz[1]))
mz[1] <- mz[1] - mz[1] * ppm / 1e6
if (is.finite(mz[2]))
mz[2] <- mz[2] + mz[2] * ppm / 1e6
if (type == "any")
keep <- which(pks[, "mzmin"] <= mz[2] & pks[, "mzmax"] >= mz[1])
if (type == "within")
keep <- which(pks[, "mzmin"] >= mz[1] & pks[, "mzmax"] <= mz[2])
if (type == "apex_within")
keep <- which(pks[, "mz"] >= mz[1] & pks[, "mz"] <= mz[2])
pks <- pks[keep, , drop = FALSE]
}
if (bySample) {
## Ensure we return something for each sample in case there is a sample
## without detected peaks.
res <- vector("list", length(fileNames(object)))
names(res) <- as.character(1:length(res))
if (nrow(pks)) {
tmp <- split.data.frame(pks,
f = pks[, "sample"])
res[as.numeric(names(tmp))] <- tmp
if (any(lengths(res) == 0)) {
emat <- matrix(nrow = 0, ncol = ncol(tmp[[1]]))
colnames(emat) <- colnames(tmp[[1]])
for (i in which(lengths(res) == 0))
res[[i]] <- emat
}
} else {
for(i in 1:length(res))
res[[i]] <- pks
}
res
} else
pks
})
#' @aliases chromPeaks<- chromPeaks<-,MsFeatureData-method chromPeakData<-,MsFeatureData-method chromPeakData<-
#'
#' @rdname XCMSnExp-class
setReplaceMethod("chromPeaks", "XCMSnExp", function(object, value) {
newFd <- new("MsFeatureData")
## Dropping all alignment results and all retention time corrections.
suppressMessages(
object <- dropChromPeaks(object)
)
## Ensure that we remove ALL related process history steps
newFd@.xData <- .copy_env(object@msFeatureData)
## Set rownames if not present
if (is.null(rownames(value)) && nrow(value))
rownames(value) <- .featureIDs(nrow(value), prefix = "CP")
chromPeaks(newFd) <- value
chromPeakData(newFd) <- DataFrame(ms_level = rep(1L, nrow(value)),
is_filled = rep(FALSE, nrow(value)),
row.names = rownames(value))
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
validObject(object)
object
})
#' @description
#'
#' \code{rtime}: extracts the retention time for each
#' scan. The \code{bySample} parameter allows to return the values grouped
#' by sample/file and \code{adjusted} whether adjusted or raw retention
#' times should be returned. By default the method returns adjusted
#' retention times, if they are available (i.e. if retention times were
#' adjusted using the \code{\link{adjustRtime}} method).
#'
#' @param bySample logical(1) specifying whether results should be grouped by
#' sample.
#'
#' @param adjusted logical(1) whether adjusted or raw (i.e. the original
#' retention times reported in the files) should be returned.
#'
#' @return
#'
#' For \code{rtime}: if \code{bySample = FALSE} a numeric vector with
#' the retention times of each scan, if \code{bySample = TRUE} a
#' \code{list} of numeric vectors with the retention times per sample.
#'
#' @rdname XCMSnExp-class
setMethod("rtime", "XCMSnExp", function(object, bySample = FALSE,
adjusted = hasAdjustedRtime(object)) {
if (adjusted) {
## ensure that we DO have adjusted retention times.
if (hasAdjustedRtime(object)) {
return(adjustedRtime(object = object, bySample = bySample))
} else {
warning("Adjusted retention times requested but none present. ",
"returning raw retention times instead.")
}
}
## Alternative:
## theM <- getMethod("rtime", "OnDiskMSnExp")
## res <- theM(object)
res <- callNextMethod(object = object)
if (bySample) {
tmp <- split(res, as.factor(fromFile(object)))
res <- vector("list", length(fileNames(object)))
names(res) <- as.character(1:length(res))
res[as.numeric(names(tmp))] <- tmp
}
return(res)
})
#' @description
#'
#' \code{mz}: extracts the mz values from each scan of
#' all files within an \code{XCMSnExp} object. These values are extracted
#' from the original data files and eventual processing steps are applied
#' \emph{on the fly}. Using the \code{bySample} parameter it is possible to
#' switch from the default grouping of mz values by spectrum/scan to a
#' grouping by sample/file.
#'
#' @return
#'
#' For \code{mz}: if \code{bySample = FALSE} a \code{list} with the mz
#' values (numeric vectors) of each scan. If \code{bySample = TRUE} a
#' \code{list} with the mz values per sample.
#'
#' @rdname XCMSnExp-class
setMethod("mz", "XCMSnExp", function(object, bySample = FALSE,
BPPARAM = bpparam()) {
res <- callNextMethod(object = object, BPPARAM = BPPARAM)
if (bySample) {
tmp <- lapply(split(res, as.factor(fromFile(object))),
unlist, use.names = FALSE)
res <- vector("list", length(fileNames(object)))
names(res) <- as.character(1:length(res))
res[as.numeric(names(tmp))] <- tmp
}
return(res)
})
#' @description
#'
#' \code{intensity}: extracts the intensity values from
#' each scan of all files within an \code{XCMSnExp} object. These values are
#' extracted from the original data files and eventual processing steps are
#' applied \emph{on the fly}. Using the \code{bySample} parameter it is
#' possible to switch from the default grouping of intensity values by
#' spectrum/scan to a grouping by sample/file.
#'
#' @return
#'
#' For \code{intensity}: if \code{bySample = FALSE} a \code{list} with
#' the intensity values (numeric vectors) of each scan. If
#' \code{bySample = TRUE} a \code{list} with the intensity values per
#' sample.
#'
#' @rdname XCMSnExp-class
setMethod("intensity", "XCMSnExp", function(object, bySample = FALSE,
BPPARAM = bpparam()) {
res <- callNextMethod(object = object, BPPARAM = BPPARAM)
if (bySample) {
tmp <- lapply(split(res, as.factor(fromFile(object))),
unlist, use.names = FALSE)
res <- vector("list", length(fileNames(object)))
names(res) <- as.character(1:length(res))
res[as.numeric(names(tmp))] <- tmp
}
return(res)
})
#' @description
#'
#' \code{spectra}: extracts the
#' \code{\link{Spectrum}} objects containing all data from
#' \code{object}. The values are extracted from the original data files and
#' eventual processing steps are applied \emph{on the fly}. By setting
#' \code{bySample = TRUE}, the spectra are returned grouped by sample/file.
#' If the \code{XCMSnExp} object contains adjusted retention times, these
#' are returned by default in the \code{Spectrum} objects (can be
#' overwritten by setting \code{adjusted = FALSE}).
#'
#' @param BPPARAM Parameter class for parallel processing. See
#' \code{\link{bpparam}}.
#'
#' @return
#'
#' For \code{spectra}: if \code{bySample = FALSE} a \code{list} with
#' \code{\link{Spectrum}} objects. If \code{bySample = TRUE} the
#' result is grouped by sample, i.e. as a \code{list} of \code{lists}, each
#' element in the \emph{outer} \code{list} being the \code{list} of spectra
#' of the specific file.
#'
#' @rdname XCMSnExp-class
setMethod("spectra", "XCMSnExp", function(object, bySample = FALSE,
adjusted = hasAdjustedRtime(object),
BPPARAM = bpparam()) {
if (adjusted & hasAdjustedRtime(object))
fData(object)$retentionTime <- rtime(object, adjusted = TRUE)
else object <- as(object, "OnDiskMSnExp")
res <- callNextMethod(object = object, BPPARAM = BPPARAM)
if (bySample) {
tmp <- split(res, as.factor(fromFile(object)))
## That's to ensure that we're always returning something for all files.
res <- vector("list", length(fileNames(object)))
names(res) <- as.character(1:length(res))
res[as.numeric(names(tmp))] <- tmp
}
return(res)
})
#' @aliases processHistory
#'
#' @description
#'
#' \code{processHistory}: returns a \code{list} of
#' \code{\link{ProcessHistory}} objects (or objects inheriting from this
#' base class) representing the individual processing steps that have been
#' performed, eventually along with their settings (\code{Param} parameter
#' class). Optional arguments \code{fileIndex}, \code{type} and
#' \code{msLevel} allow to restrict to process steps of a certain type or
#' performed on a certain file or MS level.
#'
#' @param fileIndex For \code{processHistory}: optional \code{integer}
#' specifying the index of the files/samples for which the
#' \code{\link{ProcessHistory}} objects should be retrieved.
#'
#' @param type For \code{processHistory}: restrict returned
#' \code{\link{ProcessHistory}} objects to analysis steps of a certain
#' type. Use the \code{processHistoryTypes} to list all supported values.
#' For \code{chromPeaks}: \code{character} specifying which peaks to return
#' if \code{rt} or \code{mz} are defined. For \code{type = "any"} all
#' chromatographic peaks partially overlapping the range defined by
#' \code{mz} and/or \code{rt} are returned, \code{type = "within"} returns
#' only peaks completely within the region and \code{type = "apex_within"}
#' peaks for which the peak's apex is within the region.
#'
#' @return
#'
#' For \code{processHistory}: a \code{list} of
#' \code{\link{ProcessHistory}} objects providing the details of the
#' individual data processing steps that have been performed.
#'
#' @rdname XCMSnExp-class
setMethod("processHistory", "XCMSnExp", function(object, fileIndex, type,
msLevel) {
ph <- object@.processHistory
if (length(ph)) {
if (!missing(fileIndex)) {
if (!all(fileIndex %in% 1:length(fileNames(object))))
stop("'fileIndex' has to be within 1 and the number of samples!")
gotIt <- unlist(lapply(ph, function(z) {
any(z@fileIndex %in% fileIndex)
}))
ph <- ph[gotIt]
}
if (!missing(type) & length(ph)) {
gotIt <- unlist(lapply(ph, function(z) {
any(type == processType(z))
}))
ph <- ph[gotIt]
}
if (!missing(msLevel) & length(ph)) {
gotIt <- unlist(lapply(ph, function(z) {
msLevel(z) %in% msLevel
}))
ph <- ph[gotIt]
}
return(ph)
}
list()
})
#' @description
#'
#' \code{addProcessHistory}: adds (appends) a single
#' \code{\link{ProcessHistory}} object to the \code{.processHistory} slot.
#'
#' @return
#'
#' The \code{addProcessHistory} method returns the input object with the
#' provided \code{\link{ProcessHistory}} appended to the process history.
#'
#' @noRd
setMethod("addProcessHistory", "XCMSnExp", function(object, ph) {
if (!inherits(ph, "ProcessHistory"))
stop("Argument 'ph' has to be of type 'ProcessHistory' or a class ",
"extending it!")
object@.processHistory[[(length(object@.processHistory) + 1)]] <- ph
if (validObject(object))
return(object)
})
#' @aliases dropChromPeaks dropChromPeaks,MsFeatureData-method
#'
#' @description
#'
#' \code{dropChromPeaks}: drops any identified chromatographic
#' peaks and returns the object without that information. Note that for
#' \code{XCMSnExp} objects the method drops by default also results from a
#' correspondence (peak grouping) analysis. Adjusted retention times are
#' removed if the alignment has been performed \emph{after} peak detection.
#' This can be overruled with \code{keepAdjustedRtime = TRUE}.
#'
#' @rdname XCMSnExp-class
setMethod("dropChromPeaks", "XCMSnExp", function(object,
keepAdjustedRtime = FALSE) {
if (hasChromPeaks(object)) {
phTypes <- unlist(lapply(processHistory(object), function(z)
processType(z)))
object <- dropProcessHistories(
object, type = c(.PROCSTEP.PEAK.DETECTION, .PROCSTEP.PEAK.GROUPING,
.PROCSTEP.PEAK.FILLING, .PROCSTEP.CALIBRATION,
.PROCSTEP.PEAK.REFINEMENT))
newFd <- new("MsFeatureData")
if (hasAdjustedRtime(object)) {
idx_rt_adj <- which(phTypes == .PROCSTEP.RTIME.CORRECTION)
idx_pk_det <- which(phTypes == .PROCSTEP.PEAK.DETECTION)
if (length(idx_rt_adj) && length(idx_pk_det) &&
max(idx_rt_adj) > max(idx_pk_det) && !keepAdjustedRtime) {
object <- dropProcessHistories(
object, type = .PROCSTEP.RTIME.CORRECTION)
} else
keepAdjustedRtime <- TRUE
if (keepAdjustedRtime)
adjustedRtime(newFd) <- adjustedRtime(object@msFeatureData)
}
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
}
if (validObject(object))
return(object)
})
#' @aliases dropFeatureDefinitions dropFeatureDefinitions,MsFeatureData-method
#'
#' @description
#'
#' \code{dropFeatureDefinitions}: drops the results from a
#' correspondence (peak grouping) analysis, i.e. the definition of the mz-rt
#' features and returns the object without that information. Note that for
#' \code{XCMSnExp} objects the method will also by default drop retention
#' time adjustment results, if these were performed after the last peak
#' grouping (i.e. which base on the results from the peak grouping that are
#' going to be removed). All related process history steps are
#' removed too as well as eventually filled in peaks
#' (by \code{\link{fillChromPeaks}}). The parameter \code{keepAdjustedRtime}
#' can be used to avoid removal of adjusted retention times.
#'
#' @param keepAdjustedRtime For \code{dropFeatureDefinitions,XCMSnExp}:
#' \code{logical(1)} defining whether eventually present retention time
#' adjustment should not be dropped. By default dropping feature definitions
#' drops retention time adjustment results too.
#'
#' @param dropLastN For \code{dropFeatureDefinitions,XCMSnExp}:
#' \code{numeric(1)} defining the number of peak grouping related process
#' history steps to remove. By default \code{dropLastN = -1}, dropping the
#' chromatographic peaks removes all process history steps related to peak
#' grouping. Setting e.g. \code{dropLastN = 1} will only remove the most
#' recent peak grouping related process history step.
#'
#' @rdname XCMSnExp-class
setMethod("dropFeatureDefinitions", "XCMSnExp", function(object,
keepAdjustedRtime = FALSE,
dropLastN = -1) {
if (hasFeatures(object)) {
phTypes <- unlist(lapply(processHistory(object), function(z)
processType(z)))
idx_art <- which(phTypes == .PROCSTEP.RTIME.CORRECTION)
idx_fal <- which(phTypes == .PROCSTEP.PEAK.GROUPING)
if (length(idx_art) == 0)
idx_art <- -1L
if (length(idx_fal) == 0)
idx_fal <- -1L
## 1) drop last related process history step and results
object <- dropProcessHistories(
object, type = .PROCSTEP.PEAK.GROUPING, num = 1)
## Drop also eventual filterFeatureDefinitions
object <- dropGenericProcessHistory(
object, fun = "filterFeatureDefinitions")
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
drop_proc_hist <- character()
dropAdjustedRtime <- FALSE
if (max(idx_art) > max(idx_fal) & !keepAdjustedRtime) {
drop_proc_hist <- .PROCSTEP.PEAK.GROUPING
dropAdjustedRtime <- TRUE
}
newFd <- dropFeatureDefinitions(newFd, dropAdjustedRtime)
if (.hasFilledPeaks(object))
drop_proc_hist <- c(drop_proc_hist, .PROCSTEP.PEAK.FILLING)
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
if (!hasChromPeaks(object))
drop_proc_hist <- c(drop_proc_hist, .PROCSTEP.PEAK.DETECTION,
.PROCSTEP.PEAK.REFINEMENT)
if (length(drop_proc_hist))
object <- dropProcessHistories(object, drop_proc_hist)
}
if (validObject(object))
return(object)
})
#' @aliases dropAdjustedRtime dropAdjustedRtime,MsFeatureData-method
#'
#' @description
#'
#' \code{dropAdjustedRtime}: drops any retention time
#' adjustment information and returns the object without adjusted retention
#' time. For \code{XCMSnExp} objects, this also reverts the retention times
#' reported for the chromatographic peaks in the peak matrix to the
#' original, raw, ones (after chromatographic peak detection). Note that
#' for \code{XCMSnExp} objects the method drops also all peak grouping
#' results if these were performed \emph{after} the retention time
#' adjustment. All related process history steps are removed too.
#'
#' @rdname XCMSnExp-class
setMethod("dropAdjustedRtime", "XCMSnExp", function(object) {
if (hasAdjustedRtime(object)) {
## Get the process history types to determine the order of the analysis
## steps.
phTypes <- unlist(lapply(processHistory(object), function(z)
processType(z)))
idx_art <- which(phTypes == .PROCSTEP.RTIME.CORRECTION)
idx_fal <- which(phTypes == .PROCSTEP.PEAK.GROUPING)
if (length(idx_art) == 0)
idx_art <- -1L
if (length(idx_fal) == 0)
idx_fal <- -1L
## Copy the content of the object
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
object <- dropProcessHistories(
object, type = .PROCSTEP.RTIME.CORRECTION, num = 1)
newFd <- dropAdjustedRtime(
newFd, rtime(object, bySample = TRUE, adjusted = FALSE))
## 2) If grouping has been performed AFTER retention time correction it
## has to be dropped too, including ALL related process histories.
if (hasFeatures(object)) {
if (max(idx_fal) > max(idx_art)) {
newFd <- dropFeatureDefinitions(newFd)
object <- dropProcessHistories(
object, type = .PROCSTEP.PEAK.GROUPING, num = -1)
}
} else {
## If there is any peak alignment related process history, but no
## peak alignment results, drop them.
object <- dropProcessHistories(
object, type = .PROCSTEP.PEAK.GROUPING, num = -1)
}
object@msFeatureData <- newFd
lockEnvironment(newFd, bindings = TRUE)
}
if (validObject(object))
return(object)
})
#' @description
#'
#' The \code{[} method allows to subset a \code{\link{XCMSnExp}}
#' object by spectra. Be aware that the \code{[} method removes all
#' preprocessing results, except adjusted retention times if
#' \code{keepAdjustedRtime = TRUE} is passed to the method.
#'
#' @param x For \code{[} and \code{[[}: an \code{\link{XCMSnExp}} object.
#'
#' @param i For \code{[}: \code{numeric} or \code{logical} vector specifying to
#' which spectra the data set should be reduced.
#' For \code{[[}: a single integer or character.
#'
#' @param j For \code{[} and \code{[[}: not supported.
#'
#' @param drop For \code{[} and \code{[[}: not supported.
#'
#' @rdname XCMSnExp-filter-methods
setMethod("[", "XCMSnExp", function(x, i, j, ..., drop = TRUE) {
if (!missing(j))
stop("subsetting by columns ('j') not supported")
if (missing(i))
return(x)
else if (!(is.numeric(i) | is.logical(i)))
stop("'i' has to be either numeric or logical")
## Only result we might eventually keep is adjusted rtimes...
newFd <- new("MsFeatureData")
ph <- list()
## Check if we have keepAdjustedRtime as an additional parameter
## in ...
keepAdjustedRtime <- list(...)$ke
if (is.null(keepAdjustedRtime))
keepAdjustedRtime <- FALSE
if ((hasFeatures(x) || hasChromPeaks(x)) && length(i) > 30)
warning("Removed preprocessing results")
if (hasAdjustedRtime(x) && keepAdjustedRtime) {
new_adj <- rtime(x, adjusted = TRUE)[i]
adjustedRtime(newFd) <-
unname(split(new_adj, f = fromFile(x)[i]))
p <- processHistory(x, type = .PROCSTEP.RTIME.CORRECTION)
ph <- p[length(ph)]
}
lockEnvironment(newFd, bindings = TRUE)
x@msFeatureData <- newFd
x@.processHistory <- ph
callNextMethod()
})
#' @description
#'
#' \code{[[} extracts a single \code{\link{Spectrum}}
#' object from an \code{XCMSnExp}. The reported retention time is the
#' adjusted retention time if alignment has been performed on \code{x}.
#'
#' @rdname XCMSnExp-filter-methods
setMethod("[[", "XCMSnExp",
function(x, i, j, drop = FALSE) {
## If it has adjusted retention times, replace raw ones.
if (hasAdjustedRtime(x))
x@featureData$retentionTime <- rtime(x, adjusted = TRUE)
x <- as(x, "OnDiskMSnExp")
callNextMethod()
})
#' @title XCMSnExp data manipulation methods inherited from MSnbase
#'
#' @description
#'
#' The methods listed on this page are \code{\link{XCMSnExp}}
#' methods inherited from its parent, the
#' \code{\link{OnDiskMSnExp}} class from the \code{MSnbase}
#' package, that alter the raw data or are related to data subsetting. Thus
#' calling any of these methods causes all \code{xcms} pre-processing
#' results to be removed from the \code{\link{XCMSnExp}} object to ensure
#' its data integrity.
#'
#' \code{bin}: allows to \emph{bin} spectra. See
#' \code{\link{bin}} documentation in the \code{MSnbase} package for more
#' details and examples.
#'
#' @param x \code{\link{XCMSnExp}} or \code{\link{OnDiskMSnExp}}
#' object.
#'
#' @param object \code{\link{XCMSnExp}} or \code{\link{OnDiskMSnExp}}
#' object.
#'
#' @param binSize \code{numeric(1)} defining the size of a bin (in Dalton).
#'
#' @param msLevel. For \code{bin}, \code{clean}, \code{filterMsLevel},
#' \code{removePeaks}: \code{numeric(1)} defining the MS level(s)
#' to which operations should be applied or to which the object should be
#' subsetted.
#'
#' @return For all methods: a \code{XCMSnExp} object.
#'
#' @rdname XCMSnExp-inherited-methods
#'
#' @seealso \code{\link{XCMSnExp-filter}} for methods to filter and subset
#' \code{XCMSnExp} objects.
#' \code{\link{XCMSnExp}} for base class documentation.
#' \code{\link{OnDiskMSnExp}} for the documentation of the
#' parent class.
#'
#' @author Johannes Rainer
setMethod("bin", "XCMSnExp", function(object, binSize = 1L, msLevel.) {
if (hasAdjustedRtime(object) | hasFeatures(object) |
hasChromPeaks(object)) {
## object@.processHistory <- list()
## object@msFeatureData <- new("MsFeatureData")
object <- dropAdjustedRtime(object)
object <- dropFeatureDefinitions(object)
object <- dropChromPeaks(object)
warning("Removed preprocessing results")
}
callNextMethod()
})
#' @description
#'
#' \code{clean}: removes unused \code{0} intensity data
#' points. See \code{\link{clean}} documentation in the \code{MSnbase} package
#' for details and examples.
#'
#' @param all For \code{clean}: \code{logical(1)}, if \code{TRUE} all zeros are
#' removed.
#'
#' @param verbose \code{logical(1)} whether progress information should be
#' displayed.
#'
#' @rdname XCMSnExp-inherited-methods
setMethod("clean", "XCMSnExp", function(object, all = FALSE,
verbose = FALSE, msLevel.) {
if (hasAdjustedRtime(object) | hasFeatures(object) |
hasChromPeaks(object)) {
## object@.processHistory <- list()
## object@msFeatureData <- new("MsFeatureData")
object <- dropAdjustedRtime(object)
object <- dropFeatureDefinitions(object)
object <- dropChromPeaks(object)
warning("Removed preprocessing results")
}
callNextMethod()
})
#' @description
#'
#' \code{filterMsLevel}: reduces the \code{\link{XCMSnExp}}
#' object to spectra of the specified MS level(s). Chromatographic peaks
#' and identified features are also subsetted to the respective MS level. See
#' \code{\link{filterMsLevel}} documentation for details and
#' examples.
#'
#' @rdname XCMSnExp-filter-methods
setMethod("filterMsLevel", "XCMSnExp", function(object, msLevel.,
keepAdjustedRtime =
hasAdjustedRtime(object)) {
if (missing(msLevel.)) return(object)
msLevel. <- as.numeric(msLevel.)
keep_logical <- msLevel(object) %in% msLevel.
msg <- paste0("Filter: select MS level(s) ",
paste(unique(msLevel.), collapse = " "))
msg <- paste0(msg, " [", date(), "]")
if (!any(keep_logical)) {
res <- new("XCMSnExp")
res@processingData@processing <- c(res@processingData@processing, msg)
return(res)
}
newMfd <- new("MsFeatureData")
ph <- processHistory(object)
if (hasAdjustedRtime(object)) {
if (keepAdjustedRtime) {
## issue #210: keep adjusted retention times if wanted.
keep_by_file <- base::split(keep_logical, as.factor(fromFile(object)))
adj_rt <- base::mapply(FUN = function(y, z) {
return(y[z])
}, y = adjustedRtime(object, bySample = TRUE), z = keep_by_file,
SIMPLIFY = FALSE)
adjustedRtime(newMfd) <- adj_rt
} else {
object <- dropAdjustedRtime(object)
ph <- dropProcessHistoriesList(ph,
type = .PROCSTEP.RTIME.CORRECTION)
}
}
if (hasChromPeaks(object)) {
newMfd2 <- .filterChromPeaks(
object@msFeatureData, which(chromPeakData(object)$ms_level %in%
msLevel.))
if (hasChromPeaks(newMfd2)) {
chromPeaks(newMfd) <- chromPeaks(newMfd2)
chromPeakData(newMfd) <- chromPeakData(newMfd2)
}
if (hasFeatures(newMfd2))
featureDefinitions(newMfd) <- featureDefinitions(newMfd2)
}
## Subset processing history
keep_ph <- vapply(ph, function(z) {
if (inherits(z, "XProcessHistory")) {
is_ok <- any(z@msLevel == msLevel.)
if (is.na(is_ok) || is_ok) TRUE
else FALSE
} else TRUE
}, logical(1))
ph <- ph[keep_ph]
## Subsetting the object.
tmp <- as(object, "OnDiskMSnExp")[base::which(keep_logical)]
object <- as(tmp, "XCMSnExp")
## Put the stuff back
object@processingData@processing <- c(object@processingData@processing, msg)
lockEnvironment(newMfd, bindings = TRUE)
object@msFeatureData <- newMfd
object@.processHistory <- ph
validObject(object)
object
})
#' @description \code{filterAcquisitionNum}: filters the
#' \code{\link{XCMSnExp}} object keeping only spectra with the provided
#' acquisition numbers. See \code{\link{filterAcquisitionNum}} for
#' details and examples.
#'
#' @param n For \code{filterAcquisitionNum}: \code{integer} defining the
#' acquisition numbers of the spectra to which the data set should be
#' sub-setted.
#'
#' @param file For \code{filterAcquisitionNum}:
#' \code{integer} defining the file index within the object to subset the
#' object by file.
#'
#' @rdname XCMSnExp-inherited-methods
setMethod("filterAcquisitionNum", "XCMSnExp", function(object, n, file) {
if (hasAdjustedRtime(object) | hasFeatures(object) |
hasChromPeaks(object)) {
## object@.processHistory <- list()
## object@msFeatureData <- new("MsFeatureData")
object <- dropAdjustedRtime(object)
object <- dropFeatureDefinitions(object)
object <- dropChromPeaks(object)
warning("Removed preprocessing results")
}
callNextMethod()
})
#' @aliases XCMSnExp-filter
#'
#' @title XCMSnExp filtering and subsetting
#'
#' @description
#'
#' The methods listed on this page allow to filter and subset
#' \code{\link{XCMSnExp}} objects. Most of them are inherited from the
#' \code{\link{OnDiskMSnExp}} object and have been adapted for
#' \code{\link{XCMSnExp}} to enable subsetting also on the preprocessing
#' results.
#'
#' \code{filterFile}: allows to reduce the
#' \code{\link{XCMSnExp}} to data from only certain files. Identified
#' chromatographic peaks for these files are retained while correspondence
#' results (feature definitions) are removed by default. To force keeping
#' feature definitions use \code{keepFeatures = TRUE}. Adjusted retention times
#' are kept by default if present. Use \code{keepAdjustedRtime = FALSE} to
#' remove them.
#'
#' @details
#'
#' All subsetting methods try to ensure that the returned data is
#' consistent. Correspondence results for example are removed by default if the
#' data set is sub-setted by file, since the correspondence results are
#' dependent on the files on which correspondence was performed. This can be
#' changed by setting \code{keepFeatures = TRUE}.
#' For adjusted retention times, most subsetting methods
#' support the argument \code{keepAdjustedRtime} (even the \code{[} method)
#' that forces the adjusted retention times to be retained even if the
#' default would be to drop them.
#'
#' @note
#'
#' The \code{filterFile} method removes also process history steps not
#' related to the files to which the object should be sub-setted and updates
#' the \code{fileIndex} attribute accordingly. Also, the method does not
#' allow arbitrary ordering of the files or re-ordering of the files within
#' the object.
#'
#' Note also that most of the filtering methods, and also the subsetting
#' operations \code{[} drop all or selected preprocessing results. To
#' consolidate the alignment results, i.e. ensure that adjusted retention
#' times are always preserved, use the \code{\link{applyAdjustedRtime}}
#' function on the object that contains the alignment results. This replaces
#' the raw retention times with the adjusted ones.
#'
#' @param object A \code{\link{XCMSnExp}} object.
#'
#' @param file For \code{filterFile}: \code{integer} defining the file index
#' within the object to subset the object by file or \code{character}
#' specifying the file names to sub set. The indices are expected to be
#' increasingly ordered, if not they are ordered internally.
#'
#' @param keepAdjustedRtime For \code{filterFile}, \code{filterMsLevel},
#' \code{[} \code{split}: \code{logical(1)} defining whether the adjusted
#' retention times should be kept, even if e.g. features are being removed
#' (and the retention time correction was performed on these features).
#'
#' @param keepFeatures For \code{filterFile}: \code{logical(1)} whether
#' correspondence results (feature definitions) should be kept or dropped.
#' Defaults to \code{keepFeatures = FALSE} hence removing feature
#' definitions from the returned object.
#'
#' @return All methods return an \code{\link{XCMSnExp}} object.
#'
#' @author Johannes Rainer
#'
#' @seealso \code{\link{XCMSnExp}} for base class documentation.
#'
#' @rdname XCMSnExp-filter-methods
#'
#' @examples
#'
#' ## Loading a test data set with identified chromatographic peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#'
#' ## Disable parallel processing for this example
#' register(SerialParam())
#'
#' ## Subset the dataset to the first and third file.
#' xod_sub <- filterFile(faahko_sub, file = c(1, 3))
#'
#' ## The number of chromatographic peaks per file for the full object
#' table(chromPeaks(faahko_sub)[, "sample"])
#'
#' ## The number of chromatographic peaks per file for the subset
#' table(chromPeaks(xod_sub)[, "sample"])
#'
#' basename(fileNames(faahko_sub))
#' basename(fileNames(xod_sub))
#'
#' ## Filter on mz values; chromatographic peaks and features within the
#' ## mz range are retained (as well as adjusted retention times).
#' xod_sub <- filterMz(faahko_sub, mz = c(300, 400))
#' head(chromPeaks(xod_sub))
#' nrow(chromPeaks(xod_sub))
#' nrow(chromPeaks(faahko_sub))
#'
#' ## Filter on rt values. All chromatographic peaks and features within the
#' ## retention time range are retained. Filtering is performed by default on
#' ## adjusted retention times, if present.
#' xod_sub <- filterRt(faahko_sub, rt = c(2700, 2900))
#'
#' range(rtime(xod_sub))
#' head(chromPeaks(xod_sub))
#' range(chromPeaks(xod_sub)[, "rt"])
#'
#' nrow(chromPeaks(faahko_sub))
#' nrow(chromPeaks(xod_sub))
#'
#' ## Extract a single Spectrum
#' faahko_sub[[4]]
#'
#' ## Subsetting using [ removes all preprocessing results - using
#' ## keepAdjustedRtime = TRUE would keep adjusted retention times, if present.
#' xod_sub <- faahko_sub[fromFile(faahko_sub) == 1]
#' xod_sub
#'
#' ## Using split does also remove preprocessing results, but it supports the
#' ## optional parameter keepAdjustedRtime.
#' ## Split the object into a list of XCMSnExp objects, one per file
#' xod_list <- split(faahko_sub, f = fromFile(faahko_sub))
#' xod_list
setMethod(
"filterFile", "XCMSnExp",
function(object, file, keepAdjustedRtime = hasAdjustedRtime(object),
keepFeatures = FALSE) {
object <- .filter_file_XCMSnExp(object, file = file,
keepAdjustedRtime = keepAdjustedRtime,
keepFeatures = keepFeatures)
validObject(object)
object
})
#' @description
#'
#' \code{filterMz}: filters the data set based on the
#' provided mz value range. All chromatographic peaks and features (grouped
#' peaks) falling completely within the provided mz value range are retained
#' (if their minimal mz value is \code{>= mz[1]} and the maximal mz value
#' \code{<= mz[2]}. Adjusted retention times, if present, are not altered by
#' the filtering.
#'
#' @param mz For \code{filterMz}: \code{numeric(2)} defining the lower and upper
#' mz value for the filtering.
#'
#' @param msLevel. For \code{filterMz}, \code{filterRt}, \code{numeric(1)}
#' defining the MS level(s) to which operations should be applied or to
#' which the object should be subsetted. See \code{\link{filterMz}}
#' for more details
#'
#' @param ... Optional additional arguments.
#'
#' @rdname XCMSnExp-filter-methods
setMethod("filterMz", "XCMSnExp", function(object, mz, msLevel., ...) {
if (missing(mz))
return(object)
if (!is.numeric(mz))
stop("'mz' has to be a numeric vector of length(2)!")
mz <- range(mz)
## Subset peaks if present.
object <- callNextMethod() # just adds to processing queue.
if (hasChromPeaks(object)) {
pks <- chromPeaks(object)
keepIdx <- which(pks[, "mzmin"] >= mz[1] & pks[, "mzmax"] <= mz[2])
newE <- .filterChromPeaks(object@msFeatureData, idx = keepIdx)
lockEnvironment(newE, bindings = TRUE)
object@msFeatureData <- newE
}
validObject(object)
object
})
#' @description
#'
#' \code{filterRt}: filters the data set based on the
#' provided retention time range. All chromatographic peaks and features
#' (grouped peaks) the specified retention time window are retained (i.e. if
#' the retention time corresponding to the peak's apex is within the
#' specified rt range). If retention time correction has been performed,
#' the method will by default filter the object by adjusted retention times.
#' The argument \code{adjusted} allows to specify manually whether filtering
#' should be performed by raw or adjusted retention times. Filtering by
#' retention time does not drop any preprocessing results nor does it remove
#' or change alignment results (i.e. adjusted retention times).
#' The method returns an empty object if no spectrum or feature is within
#' the specified retention time range.
#'
#' @param rt For \code{filterRt}: \code{numeric(2)} defining the retention time
#' window (lower and upper bound) for the filtering.
#'
#' @param adjusted For \code{filterRt}: \code{logical} indicating whether the
#' object should be filtered by original (\code{adjusted = FALSE}) or
#' adjusted retention times (\code{adjusted = TRUE}).
#' For \code{spectra}: whether the retention times in the individual
#' \code{Spectrum} objects should be the adjusted or raw retention times.
#'
#' @rdname XCMSnExp-filter-methods
setMethod("filterRt", "XCMSnExp", function(object, rt, msLevel.,
adjusted = hasAdjustedRtime(object)) {
if (missing(rt))
return(object)
if (!missing(msLevel.))
warning("Parameter 'msLevel.' currently ignored.")
rt <- range(rt)
## Get index of spectra within the rt window.
## Subset using [
## Subset peaks
## Subset features
## Subset adjusted retention time
if (!adjusted) {
have_rt <- rtime(object, adjusted = FALSE, bySample = FALSE)
} else {
have_rt <- adjustedRtime(object, bySample = FALSE)
if (is.null(have_rt))
stop("No adjusted retention time available!")
}
keep_logical <- have_rt >= rt[1] & have_rt <= rt[2]
msg <- paste0("Filter: select retention time [",
paste0(rt, collapse = "-"),
"] and MS level(s), ",
paste(base::unique(msLevel(object)),
collapse = " "))
msg <- paste0(msg, " [", date(), "]")
if (!any(keep_logical)) {
res <- new("XCMSnExp")
res@processingData@processing <- c(res@processingData@processing, msg)
return(res)
}
## Extract the stuff we want to keep
newMfd <- new("MsFeatureData")
ph <- processHistory(object)
## 1) Subset peaks within the retention time range and peak groups.
keep_fts <- numeric()
if (hasChromPeaks(object)) {
ftrt <- chromPeaks(object)[, "rt"]
if (!adjusted & hasAdjustedRtime(object)) {
## Have to convert the rt before subsetting.
fts <- .applyRtAdjToChromPeaks(chromPeaks(object),
rtraw = rtime(object, bySample = TRUE),
rtadj = rtime(object, bySample = TRUE,
adjusted = FALSE))
ftrt <- fts[, "rt"]
}
keep_fts <- base::which(ftrt >= rt[1] & ftrt <= rt[2])
if (length(keep_fts))
newMfd <- .filterChromPeaks(object@msFeatureData, idx = keep_fts)
else
ph <- dropProcessHistoriesList(ph,
type = c(.PROCSTEP.PEAK.DETECTION,
.PROCSTEP.PEAK.GROUPING,
.PROCSTEP.PEAK.FILLING,
.PROCSTEP.CALIBRATION))
}
## 2) Subset adjusted retention time
## if (hasAdjustedRtime(object) & length(keep_fts)) {
if (hasAdjustedRtime(object)) {
## Subset the adjusted retention times (which are stored as a list of
## rts by file):
keep_by_file <- base::split(keep_logical, as.factor(fromFile(object)))
adj_rt <- base::mapply(FUN = function(y, z) {
return(y[z])
}, y = adjustedRtime(object, bySample = TRUE), z = keep_by_file,
SIMPLIFY = FALSE)
adjustedRtime(newMfd) <- adj_rt
}
## 3) Subset the OnDiskMSnExp part
## Note: this is still slightly faster than dropping the msFeatureData and
## calling it on the XCMSnExp!
tmp <- as(object, "OnDiskMSnExp")[base::which(keep_logical)]
object <- as(tmp, "XCMSnExp")
## Put the stuff back
object@processingData@processing <- c(object@processingData@processing, msg)
lockEnvironment(newMfd, bindings = TRUE)
object@msFeatureData <- newMfd
object@.processHistory <- ph
object
})
#' @description
#'
#' The \code{normalize} method performs basic normalization of
#' spectra intensities. See \code{\link{normalize}} documentation
#' in the \code{MSnbase} package for details and examples.
#'
#' @param method For \code{normalize}: \code{character(1)} specifying the
#' normalization method. See \code{\link{normalize}} in the \code{MSnbase}
#' package for details.
#' For \code{pickPeaks}: \code{character(1)} defining the method. See
#' \code{\link{pickPeaks}} for options. For \code{smooth}:
#' \code{character(1)} defining the method. See
#' \code{\link{smooth}} in the \code{MSnbase} package for options and
#' details.
#'
#' @rdname XCMSnExp-inherited-methods
setMethod("normalize", "XCMSnExp", function(object, method = c("max", "sum"),
...) {
if (hasAdjustedRtime(object) | hasFeatures(object) |
hasChromPeaks(object)) {
object@.processHistory <- list()
object@msFeatureData <- new("MsFeatureData")
warning("Removed preprocessing results")
}
callNextMethod()
})
#' @description
#'
#' The \code{pickPeaks} method performs peak picking. See
#' \code{\link{pickPeaks}} documentation for details and examples.
#'
#' @param halfWindowSize For \code{pickPeaks} and \code{smooth}:
#' \code{integer(1)} defining the window size for the peak picking. See
#' \code{\link{pickPeaks}} and \code{\link{smooth}} in the \code{MSnbase}
#' package for details and options.
#'
#' @param SNR For \code{pickPeaks}: \code{numeric(1)} defining the signal to
#' noise ratio to be considered. See \code{\link{pickPeaks}}
#' documentation for details.
#'
#' @param ... Optional additional arguments.
#'
#' @rdname XCMSnExp-inherited-methods
setMethod("pickPeaks", "XCMSnExp", function(object, halfWindowSize = 3L,
method = c("MAD", "SuperSmoother"),
SNR = 0L, ...) {
if (hasAdjustedRtime(object) | hasFeatures(object) |
hasChromPeaks(object)) {
object@.processHistory <- list()
object@msFeatureData <- new("MsFeatureData")
warning("Removed preprocessing results")
}
callNextMethod()
})
#' @description
#'
#' The \code{removePeaks} method removes mass peaks (intensities)
#' lower than a threshold. Note that these peaks refer to \emph{mass}
#' peaks, which are different to the chromatographic peaks detected and
#' analyzed in a metabolomics experiment! See
#' \code{\link{removePeaks}} documentation for details and
#' examples.
#'
#' @param t For \code{removePeaks}: either a \code{numeric(1)} or \code{"min"}
#' defining the threshold (method) to be used. See
#' \code{\link{removePeaks}} for details.
#'
#' @rdname XCMSnExp-inherited-methods
setMethod("removePeaks", "XCMSnExp", function(object, t = "min", verbose = FALSE,
msLevel.) {
if (hasAdjustedRtime(object) | hasFeatures(object) |
hasChromPeaks(object)) {
object@.processHistory <- list()
object@msFeatureData <- new("MsFeatureData")
warning("Removed preprocessing results")
}
callNextMethod()
})
#' @description
#'
#' The \code{smooth} method smooths spectra. See
#' \code{\link{smooth}} documentation in \code{MSnbase} for details and
#' examples.
#'
#' @rdname XCMSnExp-inherited-methods
setMethod("smooth", "XCMSnExp", function(x, method = c("SavitzkyGolay",
"MovingAverage"),
halfWindowSize = 2L, verbose = FALSE,
...) {
if (hasAdjustedRtime(x) | hasFeatures(x) |
hasChromPeaks(x)) {
x@.processHistory <- list()
x@msFeatureData <- new("MsFeatureData")
warning("Removed preprocessing results")
}
callNextMethod()
})
#' @aliases setAs
#'
#' @rdname XCMSnExp-class
#'
#' @name XCMSnExp-class
setAs(from = "XCMSnExp", to = "xcmsSet", def = .XCMSnExp2xcmsSet)
#' @rdname XCMSnExp-peak-grouping-results
setMethod("quantify", "XCMSnExp", function(object, ...) {
.XCMSnExp2SummarizedExperiment(object, ...)
})
#' @title Peak grouping/correspondence based on time dimension peak densities
#'
#' @description
#'
#' `groupChromPeaks,XCMSnExp,PeakDensityParam`:
#' performs correspondence (peak grouping within and across samples) within
#' in mz dimension overlapping slices of MS data based on the density
#' distribution of the identified chromatographic peaks in the slice along
#' the time axis.
#'
#' The correspondence analysis can be performed on chromatographic peaks of
#' any MS level (if present and if chromatographic peak detection has been
#' performed for that MS level) defining features combining these peaks. The
#' MS level can be selected with the parameter `msLevel`. By default, calling
#' `groupChromPeaks` will remove any previous correspondence results. This can
#' be disabled with `add = TRUE`, which will add newly defined features to
#' already present feature definitions.
#'
#' @param object For `groupChromPeaks`: an [XCMSnExp] object
#' containing the results from a previous peak detection analysis (see
#' [findChromPeaks()]).
#'
#' For all other methods: a `PeakDensityParam` object.
#'
#' @param param A `PeakDensityParam` object containing all settings for
#' the peak grouping algorithm.
#'
#' @param msLevel `integer(1)` (default `msLevel = 1L`) defining the MS level
#' on which the correspondence should be performed. It is required that
#' chromatographic peaks of the respective MS level are present.
#'
#' @param add `logical(1)` (default `add = FALSE`) allowing to perform an
#' additional round of correspondence (e.g. on a different MS level) and
#' add features to the already present feature definitions.
#'
#' @return
#'
#' For `groupChromPeaks`: a [XCMSnExp] object with the
#' results of the correspondence analysis. The definition of the resulting
#' mz-rt features can be accessed with the [featureDefinitions()] method
#'
#' @seealso
#'
#' [XCMSnExp] for the object containing the results of the correspondence.
#'
#' [plotChromPeakDensity()] for plotting chromatographic peak density with the
#' possibility to test different parameter settings.
#'
#' @md
#'
#' @rdname groupChromPeaks-density
setMethod("groupChromPeaks",
signature(object = "XCMSnExp", param = "PeakDensityParam"),
function(object, param, msLevel = 1L, add = FALSE) {
if (length(msLevel) != 1)
stop("Can only perform the correspondence analysis on one MS",
" level at a time. Please repeat for other MS levels ",
"with parameter `add = TRUE`.")
if (!hasChromPeaks(object, msLevel))
stop("No chromatographic peak for MS level ", msLevel,
" present. Please perform first a peak detection ",
"using the 'findChromPeaks' method.", call. = FALSE)
if (hasFeatures(object) && !add)
object <- dropFeatureDefinitions(object)
## Check if we've got any sample groups:
if (length(sampleGroups(param)) == 0) {
sampleGroups(param) <- rep(1, length(fileNames(object)))
message("Empty 'sampleGroups' in 'param', assuming all ",
"samples to be in the same group.")
} else {
## Check that the sampleGroups are OK
if (length(sampleGroups(param)) != length(fileNames(object)))
stop("The 'sampleGroups' value in the provided 'param' ",
"class does not match the number of available files/",
"samples!", call. = FALSE)
}
if (hasChromPeaks(object) && !.has_chrom_peak_data(object))
object <- updateObject(object)
if (hasFeatures(object) &&
!any(colnames(featureDefinitions(object)) == "ms_level"))
object <- updateObject(object)
startDate <- date()
res <- do_groupChromPeaks_density(
chromPeaks(object, msLevel = msLevel),
sampleGroups = sampleGroups(param),
bw = bw(param),
minFraction = minFraction(param),
minSamples = minSamples(param),
binSize = binSize(param),
maxFeatures = maxFeatures(param))
xph <- XProcessHistory(param = param, date. = startDate,
type. = .PROCSTEP.PEAK.GROUPING,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
## Add the results.
df <- DataFrame(res)
if (!nrow(df)) {
warning("Unable to group any chromatographic peaks. ",
"You might have to adapt your settings.")
return(object)
}
df$ms_level <- as.integer(msLevel)
if (!all(chromPeakData(object)$ms_level %in% msLevel))
df <- .update_feature_definitions(
df, rownames(chromPeaks(object, msLevel = msLevel)),
rownames(chromPeaks(object)))
if (hasFeatures(object)) {
startFrom <- max(as.integer(
sub("FT", "", rownames(featureDefinitions(object))))) + 1
rownames(df) <- .featureIDs(nrow(df), from = startFrom)
df <- rbind(featureDefinitions(object), df)
} else
rownames(df) <- .featureIDs(nrow(df))
featureDefinitions(object) <- df
validObject(object)
object
})
#' @title Single-spectrum non-chromatography MS data peak grouping
#'
#' @description
#'
#' `groupChromPeaks,XCMSnExp,MzClustParam`: performs high resolution peak
#' grouping for single spectrum metabolomics data.
#'
#' @note Calling `groupChromPeaks` on an `XCMSnExp` object will cause
#' all eventually present previous correspondence results to be dropped.
#'
#' @param object For `groupChromPeaks`: an [XCMSnExp] object containing the
#' results from a previous chromatographic peak detection analysis (see
#' [findChromPeaks()]).
#'
#' For all other methods: a `MzClustParam` object.
#'
#' @param param A `MzClustParam` object containing all settings for
#' the peak grouping algorithm.
#'
#' @param msLevel `integer(1)` defining the MS level. Currently only MS level
#' 1 is supported.
#'
#' @return
#'
#' For `groupChromPeaks`: a [XCMSnExp] object with the results of the peak
#' grouping step (i.e. the features). These can be accessed with the
#' [featureDefinitions()] method.
#'
#' @seealso [XCMSnExp] for the object containing the results of
#' the peak grouping.
#'
#' @md
#'
#' @rdname groupChromPeaks-mzClust
setMethod("groupChromPeaks",
signature(object = "XCMSnExp", param = "MzClustParam"),
function(object, param, msLevel = 1L) {
if (!hasChromPeaks(object))
stop("No chromatographic peak detection results in 'object'! ",
"Please perform first a peak detection using the ",
"'findChromPeak' method.")
if (any(msLevel != 1))
stop("Currently peak grouping is only supported for MS level 1")
## I'm expecting a single spectrum per file!
rtL <- split(rtime(object), f = as.factor(fromFile(object)))
if (any(lengths(rtL) > 1))
stop("'object' contains multiple spectra per sample! This ",
"algorithm does only work for single spectra ",
"files/samples!")
## Get rid of any previous results.
if (hasFeatures(object))
object <- dropFeatureDefinitions(object)
## Check if we've got any sample groups:
if (length(sampleGroups(param)) == 0) {
sampleGroups(param) <- rep(1, length(fileNames(object)))
message("Empty 'sampleGroups' in 'param', assuming all ",
"samples to be in the same group.")
} else {
## Check that the sampleGroups are OK
if (length(sampleGroups(param)) != length(fileNames(object)))
stop("The 'sampleGroups' value in the provided 'param' ",
"class does not match the number of available files/",
"samples!")
}
if (hasChromPeaks(object) & !.has_chrom_peak_data(object))
object <- updateObject(object)
startDate <- date()
res <- do_groupPeaks_mzClust(chromPeaks(object, msLevel = msLevel),
sampleGroups = sampleGroups(param),
ppm = ppm(param),
absMz = absMz(param),
minFraction = minFraction(param),
minSamples = minSamples(param))
xph <- XProcessHistory(param = param, date. = startDate,
type. = .PROCSTEP.PEAK.GROUPING,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
## Add the results.
df <- DataFrame(res$featureDefinitions)
df$peakidx <- res$peakIndex
if (nrow(df) == 0)
stop("Unable to group any chromatographic peaks. You might ",
"have to adapt your settings.")
if (!all(chromPeakData(object)$ms_level %in% msLevel))
df <- .update_feature_definitions(
df, rownames(chromPeaks(object, msLevel = msLevel)),
rownames(chromPeaks(object)))
if (nrow(df) > 0)
rownames(df) <- .featureIDs(nrow(df))
featureDefinitions(object) <- df
validObject(object)
object
})
#' @title Peak grouping/correspondence based on proximity in the mz-rt space
#'
#' @description
#'
#' `groupChromPeaks,XCMSnExp,NearestPeaksParam`:
#' performs peak grouping based on the proximity between chromatographic
#' peaks from different samples in the mz-rt range.
#'
#' The correspondence analysis can be performed on chromatographic peaks of
#' any MS level (if present and if chromatographic peak detection has been
#' performed for that MS level) defining features combining these peaks. The
#' MS level can be selected with the parameter `msLevel`. By default, calling
#' `groupChromPeaks` will remove any previous correspondence results. This can
#' be disabled with `add = TRUE`, which will add newly defined features to
#' already present feature definitions.
#'
#' @param object For `groupChromPeaks`: an [XCMSnExp] object containing the
#' results from a previous chromatographic peak detection
#' analysis (see [findChromPeaks()]).
#'
#' For all other methods: a `NearestPeaksParam` object.
#'
#' @param msLevel `integer(1)` defining the MS level on which the correspondence
#' should be performed. It is required that chromatographic peaks of the
#' respective MS level are present.
#'
#' @param add `logical(1)` (default `add = FALSE`) allowing to perform an
#' additional round of correspondence (e.g. on a different MS level) and
#' add features to the already present feature definitions.
#'
#' @param msLevel `integer(1)` defining the MS level. Currently only MS level
#' 1 is supported.
#'
#' @return
#'
#' For `groupChromPeaks`: a [XCMSnExp] object with the results of the peak
#' grouping/correspondence step (i.e. the mz-rt features). These can be
#' accessed with the [featureDefinitions()] method.
#'
#' @seealso [XCMSnExp] for the object containing the results of
#' the peak grouping.
#'
#' @md
#'
#' @rdname groupChromPeaks-nearest
setMethod("groupChromPeaks",
signature(object = "XCMSnExp", param = "NearestPeaksParam"),
function(object, param, msLevel = 1L, add = FALSE) {
if (length(msLevel) != 1)
stop("Can only perform the correspondence analysis on one MS",
" level at a time. Please repeat for other MS levels ",
"with parameter `add = TRUE`.")
if (!hasChromPeaks(object, msLevel))
stop("No chromatographic peak for MS level ", msLevel,
" present. Please perform first a peak detection ",
"using the 'findChromPeaks' method.", call. = FALSE)
if (hasFeatures(object) && !add)
object <- dropFeatureDefinitions(object)
## Check if we've got any sample groups:
if (length(sampleGroups(param)) == 0) {
sampleGroups(param) <- rep(1, length(fileNames(object)))
message("Empty 'sampleGroups' in 'param', assuming all ",
"samples to be in the same group.")
} else {
## Check that the sampleGroups are OK
if (length(sampleGroups(param)) != length(fileNames(object)))
stop("The 'sampleGroups' value in the provided 'param' ",
"class does not match the number of available files/",
"samples!")
}
if (hasChromPeaks(object) & !.has_chrom_peak_data(object))
object <- updateObject(object)
if (hasFeatures(object) &&
!any(colnames(featureDefinitions(object)) == "ms_level"))
object <- updateObject(object)
startDate <- date()
res <- do_groupChromPeaks_nearest(
chromPeaks(object, msLevel = msLevel),
sampleGroups = sampleGroups(param),
mzVsRtBalance = mzVsRtBalance(param),
absMz = absMz(param),
absRt = absRt(param),
kNN = kNN(param))
xph <- XProcessHistory(param = param, date. = startDate,
type. = .PROCSTEP.PEAK.GROUPING,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
## Add the results.
df <- DataFrame(res$featureDefinitions)
if (!nrow(df)) {
warning("Unable to group any chromatographic peaks. ",
"You might have to adapt your settings.")
return(object)
}
df$peakidx <- res$peakIndex
df$ms_level <- as.integer(msLevel)
if (!all(chromPeakData(object)$ms_level %in% msLevel))
df <- .update_feature_definitions(
df, rownames(chromPeaks(object, msLevel = msLevel)),
rownames(chromPeaks(object)))
if (hasFeatures(object)) {
startFrom <- max(as.integer(
sub("FT", "", rownames(featureDefinitions(object))))) + 1
rownames(df) <- .featureIDs(nrow(df), from = startFrom)
df <- rbind(featureDefinitions(object), df)
} else
rownames(df) <- .featureIDs(nrow(df))
featureDefinitions(object) <- df
validObject(object)
object
})
#' @title Retention time correction based on alignment of house keeping peak
#' groups
#'
#' @description
#'
#' \code{adjustRtime,XCMSnExp,PeakGroupsParam}:
#' performs retention time correction based on the alignment of peak groups
#' (features) found in all/most samples. The correction function identified
#' on these peak groups is applied to the retention time of all spectra in
#' the object, i.e. retention times of all spectra, also MS level > 1 are
#' adjusted.
#'
#' @note
#'
#' This method requires that a correspondence analysis has been performed
#' on the data, i.e. that grouped chromatographic peaks/features are present
#' (see \code{\link{groupChromPeaks}} for details).
#'
#' Calling \code{adjustRtime} on an \code{XCMSnExp} object will cause all
#' peak grouping (correspondence) results and any previous retention time
#' adjustments to be dropped.
#' In some instances, the \code{adjustRtime,XCMSnExp,PeakGroupsParam}
#' re-adjusts adjusted retention times to ensure them being in the same
#' order than the raw (original) retention times.
#'
#' @param object For \code{adjustRtime}: an \code{\link{XCMSnExp}} object
#' containing the results from a previous chromatographic peak detection
#' (see \code{\link{findChromPeaks}}) and alignment analysis (see
#' \code{\link{groupChromPeaks}}).
#'
#' For all other methods: a \code{PeakGroupsParam} object.
#'
#' @param param A \code{PeakGroupsParam} object containing all settings for
#' the retention time correction method..
#'
#' @param msLevel \code{integer(1)} specifying the MS level. Currently only MS
#' level 1 is supported.
#'
#' @return
#'
#' For \code{adjustRtime}: a \code{\link{XCMSnExp}} object with the
#' results of the retention time adjustment step. These can be accessed
#' with the \code{\link{adjustedRtime}} method. Retention time correction
#' does also adjust the retention time of the identified chromatographic
#' peaks (accessed \emph{via} \code{\link{chromPeaks}}. Note that retention
#' time correction drops all previous alignment results from the result
#' object.
#'
#' @seealso \code{\link{XCMSnExp}} for the object containing the results of
#' the alignment.
#'
#' @rdname adjustRtime-peakGroups
setMethod("adjustRtime",
signature(object = "XCMSnExp", param = "PeakGroupsParam"),
function(object, param, msLevel = 1L) {
if (hasAdjustedRtime(object)) {
message("Removing previous alignment results")
object <- dropAdjustedRtime(object)
}
if (any(msLevel != 1))
stop("Alignment is currently only supported for MS level 1")
if (!hasChromPeaks(object))
stop("No chromatographic peak detection results in 'object'! ",
"Please perform first a peak detection using the ",
"'findChromPeaks' method.")
if (!hasFeatures(object))
stop("No feature definitions found in 'object'! Please ",
"perform first a peak grouping using the ",
"'groupChromPeak' method.")
if (hasChromPeaks(object) & !.has_chrom_peak_data(object))
object <- updateObject(object)
startDate <- date()
## If param does contain a peakGroupsMatrix extract that one,
## otherwise generate it.
if (nrow(peakGroupsMatrix(param)))
pkGrpMat <- peakGroupsMatrix(param)
else
pkGrpMat <- adjustRtimePeakGroups(object, param = param)
res <- do_adjustRtime_peakGroups(
chromPeaks(object, msLevel = msLevel),
peakIndex = .update_feature_definitions(
featureDefinitions(object), rownames(chromPeaks(object)),
rownames(chromPeaks(object, msLevel = msLevel)))$peakidx,
rtime = rtime(object, bySample = TRUE),
minFraction = minFraction(param),
extraPeaks = extraPeaks(param),
smooth = smooth(param),
span = span(param),
family = family(param),
peakGroupsMatrix = pkGrpMat,
subset = subset(param),
subsetAdjust = subsetAdjust(param)
)
## Add the pkGrpMat that's being used to the param object.
peakGroupsMatrix(param) <- pkGrpMat
## Dropping the peak groups but don't remove its process history
## step.
ph <- processHistory(object, type = .PROCSTEP.PEAK.GROUPING)
object <- dropFeatureDefinitions(object)
## Add the results. adjustedRtime<- should also fix the retention
## times for the peaks! Want to keep also the latest alignment
## information
adjustedRtime(object) <- res
if (length(ph)) {
object <- addProcessHistory(object, ph[[length(ph)]])
}
## Add the process history step, get the msLevel from the peak
## detection step.
ph <- processHistory(object, type = .PROCSTEP.PEAK.DETECTION)
xph <- XProcessHistory(param = param, date. = startDate,
type. = .PROCSTEP.RTIME.CORRECTION,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
validObject(object)
object
})
#' @title Align retention times across samples using Obiwarp
#'
#' @description
#'
#' \code{adjustRtime,XCMSnExp,ObiwarpParam}:
#' performs retention time correction/alignment based on the total mz-rt
#' data using the \emph{obiwarp} method.
#'
#' @note
#'
#' Alignment using obiwarp is performed on the retention time of spectra
#' of on MS level. Retention times for spectra of other MS levels are
#' subsequently adjusted based on the adjustment function defined on the
#' retention times of the spectra of MS level \code{msLevel}.
#'
#' Calling \code{adjustRtime} on an \code{XCMSnExp} object will cause
#' all peak grouping (correspondence) results and any previous retention
#' time adjustment results to be dropped.
#'
#' @param object For \code{adjustRtime}: an \code{\link{XCMSnExp}} object.
#'
#' For all other methods: a \code{ObiwarpParam} object.
#'
#' @param param A \code{ObiwarpParam} object containing all settings for
#' the alignment method.
#'
#' @param msLevel \code{integer} defining the MS level on which the retention
#' time should be performed.
#'
#' @return
#'
#' For \code{adjustRtime,XCMSnExp,ObiwarpParam}: a
#' \code{\link{XCMSnExp}} object with the results of the retention time
#' adjustment step. These can be accessed with the
#' \code{\link{adjustedRtime}} method. Retention time correction does also
#' adjust the retention time of the identified chromatographic peaks
#' (accessed \emph{via} \code{\link{chromPeaks}}. Note that retention time
#' correction drops all previous peak grouping results from the result
#' object.
#'
#' For \code{adjustRtime,OnDiskMSnExp,ObiwarpParam}: a \code{numeric} with
#' the adjusted retention times per spectra (in the same order than
#' \code{rtime}).
#'
#' @seealso \code{\link{XCMSnExp}} for the object containing the results of
#' the alignment.
#'
#' @references
#' John T. Prince and Edward M. Marcotte. "Chromatographic Alignment of
#' ESI-LC-MS Proteomic Data Sets by Ordered Bijective Interpolated Warping"
#' \emph{Anal. Chem.} 2006, 78 (17), 6140-6152.
#'
#' @rdname adjustRtime-obiwarp
setMethod("adjustRtime",
signature(object = "XCMSnExp", param = "ObiwarpParam"),
function(object, param, msLevel = 1L) {
## Drop adjusted retention times if there are some.
if (hasAdjustedRtime(object))
object <- dropAdjustedRtime(object)
if (any(msLevel != 1))
stop("Alignment is currently only supported for MS level 1")
if (hasChromPeaks(object) & !.has_chrom_peak_data(object))
object <- updateObject(object)
startDate <- date()
res <- adjustRtime(as(object, "OnDiskMSnExp"), param = param,
msLevel = msLevel)
## res <- .obiwarp(as(object, "OnDiskMSnExp"), param = param)
## Dropping the feature groups.
object <- dropFeatureDefinitions(object)
## Add the results. adjustedRtime<- should also fix the retention
## times for the peaks! Want to keep also the latest alignment
## information
adjustedRtime(object) <- unname(
split(res, as.factor(fromFile(object))))
## Add the process history step.
xph <- XProcessHistory(param = param, date. = startDate,
type. = .PROCSTEP.RTIME.CORRECTION,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
validObject(object)
object
})
#' @rdname XCMSnExp-class
setMethod("profMat", signature(object = "XCMSnExp"), function(object,
method = "bin",
step = 0.1,
baselevel = NULL,
basespace = NULL,
mzrange. = NULL,
fileIndex,
...) {
## We want to coerce that as OnDiskMSnExp so we don't slow down in the
## filterFile, that would, if rt adjustments are present, revert the whole
## thing.
profMat(as(object, "OnDiskMSnExp"), method = method, step = step,
baselevel = baselevel, basespace = basespace,
mzrange. = mzrange., fileIndex = fileIndex, ...)
})
#' @aliases featureValues
#'
#' @title Accessing mz-rt feature data values
#'
#' @description
#'
#' \code{featureValues,XCMSnExp} : extract a \code{matrix} for
#' feature values with rows representing features and columns samples.
#' Parameter \code{value} allows to define which column from the
#' \code{\link{chromPeaks}} matrix should be returned. Multiple
#' chromatographic peaks from the same sample can be assigned to a feature.
#' Parameter \code{method} allows to specify the method to be used in such
#' cases to chose from which of the peaks the value should be returned.
#' Parameter `msLevel` allows to choose a specific MS level for which feature
#' values should be returned (given that features have been defined for that MS
#' level).
#'
#' \code{quantify,XCMSnExp}: return the preprocessing results as an
#' \code{\link{SummarizedExperiment}} object containing the feature abundances
#' as assay matrix, the feature definitions (returned by
#' \code{\link{featureDefinitions}}) as \code{rowData} and the phenotype
#' information as \code{colData}. This is an ideal container for further
#' processing of the data. Internally, the \code{\link{featureValues}} method
#' is used to extract the feature abundances, parameters for that method can
#' be passed to \code{quantify} with \code{...}.
#'
#' @note
#'
#' This method is equivalent to the \code{\link{groupval}} for
#' \code{xcmsSet} objects. Note that \code{missing = 0} should be used to
#' get the same behaviour as \code{groupval}, i.e. report missing values as 0
#' after a call to \code{fillPeaks}.
#'
#' @param object A \code{\link{XCMSnExp}} object providing the feature
#' definitions.
#'
#' @param method \code{character} specifying the method to resolve
#' multi-peak mappings within the same sample, i.e. to define the
#' \emph{representative} peak for a feature in samples where more than
#' one peak was assigned to the feature. If \code{"medret"}: select the
#' peak closest to the median retention time of the feature.
#' If \code{"maxint"}: select the peak yielding the largest signal. If
#' \code{"sum"}: sum the values (only if \code{value} is \code{"into"} or
#' \code{"maxo"}.
#'
#' @param value \code{character} specifying the name of the column in
#' \code{chromPeaks(object)} that should be returned. Defaults to
#' \code{"into"} in which case the integrated peak area is returned. To
#' get the index of the peak in the \code{chromPeaks(object)} matrix use
#' \code{"index"}.
#'
#' @param intensity \code{character} specifying the name of the column in the
#' \code{chromPeaks(objects)} matrix containing the intensity value of the
#' peak that should be used for the conflict resolution if
#' \code{method = "maxint"}.
#'
#' @param filled \code{logical(1)} specifying whether values for filled-in
#' peaks should be returned or not. If \code{filled = FALSE}, an \code{NA}
#' is returned in the matrix for the respective peak. See
#' \code{\link{fillChromPeaks}} for details on peak filling.
#'
#' @param missing how missing values should be reported. Allowed values are
#' \code{NA} (the default), a \code{numeric} or
#' \code{missing = "rowmin_half"}. The latter replaces any \code{NA} with
#' half of the row's minimal (non-missing) value.
#'
#' @param msLevel for `featureValues`: `integer` defining the MS level(s) for
#' which feature values should be returned. By default, values for features
#' defined for all MS levels are returned.
#'
#' @param ... For \code{quantify}: additional parameters to be passed on to the
#' \code{\link{featureValues}} method.
#'
#' @return
#'
#' For \code{featureValues}: a \code{matrix} with
#' feature values, columns representing samples, rows features. The order
#' of the features matches the order found in the
#' \code{featureDefinitions(object)} \code{DataFrame}. The rownames of the
#' \code{matrix} are the same than those of the \code{featureDefinitions}
#' \code{DataFrame}. \code{NA} is reported for features without
#' corresponding chromatographic peak in the respective sample(s).
#'
#' For \code{quantify}: a \code{\link{SummarizedExperiment}} representing
#' the preprocessing results.
#'
#' @author Johannes Rainer
#'
#' @seealso
#' \code{\link{XCMSnExp}} for information on the data object.
#'
#' \code{\link{featureDefinitions}} to extract the \code{DataFrame} with the
#' feature definitions.
#'
#' \code{\link{featureChromatograms}} to extract ion chromatograms for each
#' feature.
#'
#' \code{\link{hasFeatures}} to evaluate whether the
#' \code{\link{XCMSnExp}} provides feature definitions.
#'
#' \code{\link{groupval}} for the equivalent method on \code{xcmsSet} objects.
#'
#' @rdname XCMSnExp-peak-grouping-results
setMethod("featureValues", "XCMSnExp", function(object, method = c("medret",
"maxint",
"sum"),
value = "into",
intensity = "into",
filled = TRUE, missing = NA,
msLevel = integer()) {
## Input argument checkings
if (!hasFeatures(object, msLevel = msLevel))
stop("No feature definitions for MS level(s) ", msLevel,
" present. Call 'groupChromPeaks' first.")
method <- match.arg(method)
if (method == "sum" & !(value %in% c("into", "maxo")))
stop("method 'sum' is only allowed if value is set to 'into'",
" or 'maxo'")
if (is.character(missing)) {
if (!(missing %in% c("rowmin_half")))
stop("if 'missing' is not 'NA' or a numeric it should",
" be one of: \"rowmin_half\".")
} else {
if (!is.numeric(missing) & !is.na(missing))
stop("'missing' should be either 'NA', a numeric or one",
" of: \"rowmin_half\".")
}
fNames <- basename(fileNames(object))
pks <- chromPeaks(object)
## issue #157: replace all values for filled-in peaks with NA
if (!filled)
pks[chromPeakData(object)$is_filled, ] <- NA
.feature_values(
pks = pks, fts = featureDefinitions(object, msLevel = msLevel),
method = method, value = value, intensity = intensity,
colnames = fNames, missing = missing)
})
#' Internal function to extract feature values based on featureDefinitions
#' `fts` and chromPeaks `pks`.
#'
#' @author Johannes Rainer
#'
#' @noRd
.feature_values <- function(pks, fts, method, value = "into",
intensity = "into", colnames,
missing = NA) {
ftIdx <- fts$peakidx
## Match columns
idx_rt <- match("rt", colnames(pks))
idx_int <- match(intensity, colnames(pks))
idx_samp <- match("sample", colnames(pks))
vals <- matrix(nrow = length(ftIdx), ncol = length(colnames))
nSamples <- seq_along(colnames)
if (method == "sum") {
for (i in seq_along(ftIdx)) {
cur_pks <- pks[ftIdx[[i]], c(value, "sample"), drop=FALSE]
int_sum <- split(cur_pks[, value],
as.factor(as.integer(cur_pks[, "sample"])))
vals[i, as.numeric(names(int_sum))] <-
unlist(lapply(int_sum, base::sum), use.names = FALSE)
}
} else {
if (method == "medret") {
medret <- fts$rtmed
for (i in seq_along(ftIdx)) {
gidx <- ftIdx[[i]][
base::order(base::abs(pks[ftIdx[[i]],
idx_rt] - medret[i]))]
vals[i, ] <- gidx[
base::match(nSamples, pks[gidx, idx_samp])]
}
}
if (method == "maxint") {
for (i in seq_along(ftIdx)) {
gidx <- ftIdx[[i]][
base::order(pks[ftIdx[[i]], idx_int],
decreasing = TRUE)]
vals[i, ] <- gidx[base::match(nSamples,
pks[gidx, idx_samp])]
}
}
if (value != "index") {
if (!any(colnames(pks) == value))
stop("Column '", value, "' not present in the ",
"chromatographic peaks matrix!")
vals <- pks[vals, value]
dim(vals) <- c(length(ftIdx), length(nSamples))
}
}
if (value != "index") {
if (is.numeric(missing)) {
vals[is.na(vals)] <- missing
}
if (!is.na(missing) & missing == "rowmin_half") {
for (i in seq_len(nrow(vals))) {
nas <- is.na(vals[i, ])
if (any(nas))
vals[i, nas] <- min(vals[i, ], na.rm = TRUE) / 2
}
}
}
colnames(vals) <- colnames
rownames(vals) <- rownames(fts)
vals
}
## #' @rdname XCMSnExp-peak-grouping-results
## setMethod("groupval",
## signature(object = "XCMSnExp"),
## function(object, method = c("medret", "maxint"), value = "index",
## intensity = "into") {
## featureValues(object = object, method = method, value = value,
## intensity = intensity)
## })
#' @aliases chromatogram
#'
#' @title Extracting chromatograms
#'
#' @description
#'
#' `chromatogram`: extract chromatographic data (such as an extracted ion
#' chromatogram, a base peak chromatogram or total ion chromatogram) from
#' an [OnDiskMSnExp] or [XCMSnExp] objects. See also the help page of the
#' `chromatogram` function in the `MSnbase` package.
#'
#' @details
#'
#' Arguments `rt` and `mz` allow to specify the MS data slice (i.e. the m/z
#' range and retention time window) from which the chromatogram should be
#' extracted. These parameters can be either a `numeric` of length 2 with the
#' lower and upper limit, or a `matrix` with two columns with the lower and
#' upper limits to extract multiple EICs at once.
#' The parameter `aggregationSum` allows to specify the function to be
#' used to aggregate the intensities across the m/z range for the same
#' retention time. Setting `aggregationFun = "sum"` would e.g. allow
#' to calculate the **total ion chromatogram** (TIC),
#' `aggregationFun = "max"` the **base peak chromatogram** (BPC).
#'
#' If for a given retention time no intensity is measured in that spectrum a
#' `NA` intensity value is returned by default. This can be changed with the
#' parameter `missing`, setting `missing = 0` would result in a `0` intensity
#' being returned in these cases.
#'
#' @note
#'
#' For [XCMSnExp] objects, if adjusted retention times are
#' available, the `chromatogram` method will by default report
#' and use these (for the subsetting based on the provided parameter
#' `rt`). This can be changed by setting `adjustedRtime = FALSE`.
#'
#' @param object Either a [OnDiskMSnExp] or [XCMSnExp] object from which the
#' chromatograms should be extracted.
#'
#' @param rt `numeric(2)` or two-column `matrix` defining the lower
#' and upper boundary for the retention time range(s). If not specified,
#' the full retention time range of the original data will be used.
#'
#' @param mz `numeric(2)` or two-column `matrix` defining the lower
#' and upper mz value for the MS data slice(s). If not specified, the
#' chromatograms will be calculated on the full mz range.
#'
#' @param adjustedRtime For `chromatogram,XCMSnExp`: whether the
#' adjusted (`adjustedRtime = TRUE`) or raw retention times
#' (`adjustedRtime = FALSE`) should be used for filtering and returned
#' in the resulting [MChromatograms] object. Adjusted
#' retention times are used by default if available.
#'
#' @param aggregationFun `character(1)` specifying the function to be used to
#' aggregate intensity values across the mz value range for the same
#' retention time. Allowed values are `"sum"` (the default), `"max"`,
#' `"mean"` and `"min"`.
#'
#' @param missing `numeric(1)` allowing to specify the intensity value to
#' be used if for a given retention time no signal was measured within the
#' mz range of the corresponding scan. Defaults to `NA_real_` (see also
#' Details and Notes sections below). Use `missing = 0` to resemble the
#' behaviour of the `getEIC` from the *old* user interface.
#'
#' @param msLevel `integer(1)` specifying the MS level from which the
#' chromatogram should be extracted. Defaults to `msLevel = 1L`.
#'
#' @param BPPARAM Parallelisation backend to be used, which will
#' depend on the architecture. Default is
#' `BiocParallel::bparam()`.
#'
#' @param filled `logical(1)` whether filled-in peaks should also be
#' returned. Defaults to `filled = FALSE`, i.e. returns only detected
#' chromatographic peaks in the result object.
#'
#' @param include `character(1)` defining which chromatographic peaks should be
#' returned. Supported are `include = "apex_within"` (the default) which
#' returns chromatographic peaks that have their apex within the `mz` `rt`
#' range, `include = "any"` to return all chromatographic peaks which
#' m/z and rt ranges overlap the `mz` and `rt` or `include = "none"` to
#' not include any chromatographic peaks.
#'
#' @return
#'
#' `chromatogram` returns a [XChromatograms] object with
#' the number of columns corresponding to the number of files in
#' `object` and number of rows the number of specified ranges (i.e.
#' number of rows of matrices provided with arguments `mz` and/or
#' `rt`). All chromatographic peaks with their apex position within the
#' m/z and retention time range are also retained as well as all feature
#' definitions for these peaks.
#'
#' @author Johannes Rainer
#'
#' @seealso [XCMSnExp] for the data object.
#' [Chromatogram] for the object representing chromatographic data.
#'
#' [XChromatograms] for the object allowing to arrange
#' multiple [XChromatogram] objects.
#'
#' [plot] to plot a [XChromatogram] or [MChromatograms] objects.
#'
#' `as` (`as(x, "data.frame")`) in `MSnbase` for a method to extract
#' the MS data as `data.frame`.
#'
#' @export
#'
#' @md
#'
#' @rdname chromatogram-method
#'
#' @examples
#'
#' ## Load a test data set with identified chromatographic peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#'
#' ## Disable parallel processing for this example
#' register(SerialParam())
#'
#' ## Extract the ion chromatogram for one chromatographic peak in the data.
#' chrs <- chromatogram(faahko_sub, rt = c(2700, 2900), mz = 335)
#'
#' chrs
#'
#' ## Identified chromatographic peaks
#' chromPeaks(chrs)
#'
#' ## Plot the chromatogram
#' plot(chrs)
#'
#' ## Extract chromatograms for multiple ranges.
#' mzr <- matrix(c(335, 335, 344, 344), ncol = 2, byrow = TRUE)
#' rtr <- matrix(c(2700, 2900, 2600, 2750), ncol = 2, byrow = TRUE)
#' chrs <- chromatogram(faahko_sub, mz = mzr, rt = rtr)
#'
#' chromPeaks(chrs)
#'
#' plot(chrs)
#'
#' ## Get access to all chromatograms for the second mz/rt range
#' chrs[1, ]
#'
#' ## Plot just that one
#' plot(chrs[1, , drop = FALSE])
setMethod(
"chromatogram", "XCMSnExp",
function(object, rt, mz, aggregationFun = "sum", missing = NA_real_,
msLevel = 1L, BPPARAM = bpparam(),
adjustedRtime = hasAdjustedRtime(object), filled = FALSE,
include = c("apex_within", "any", "none")) {
include <- match.arg(include)
if (adjustedRtime)
adj_rt <- rtime(object, adjusted = TRUE)
object_od <- as(object, "OnDiskMSnExp")
fcs <- c("fileIdx", "spIdx", "seqNum", "acquisitionNum", "msLevel",
"polarity", "retentionTime", "precursorScanNum")
fcs <- intersect(fcs, colnames(fData(object)))
object_od <- selectFeatureData(object_od, fcol = fcs)
if (adjustedRtime)
object_od@featureData$retentionTime <- adj_rt
res <- MSnbase::chromatogram(object_od, rt = rt, mz = mz,
aggregationFun = aggregationFun,
missing = missing, msLevel = msLevel,
BPPARAM = BPPARAM)
if (!hasChromPeaks(object) | include == "none")
return(res)
## Process peaks
lvls <- 1:length(fileNames(object))
if (missing(rt))
rt <- c(-Inf, Inf)
if (missing(mz))
mz <- c(-Inf, Inf)
if (is.matrix(rt) | is.matrix(mz)) {
## Ensure rt and mz are aligned.
if (!is.matrix(rt))
rt <- matrix(rt, ncol = 2)
if (!is.matrix(mz))
mz <- matrix(mz, ncol = 2)
if (nrow(rt) == 1)
rt <- matrix(rep(rt, nrow(mz)), ncol = 2, byrow = TRUE)
if (nrow(mz) == 1)
mz <- matrix(rep(mz, nrow(rt)), ncol = 2, byrow = TRUE)
pk_list <- vector("list", nrow(mz))
pkd_list <- vector("list", nrow(mz))
for (i in 1:nrow(mz)) {
pks <- chromPeaks(object, rt = rt[i, ], mz = mz[i, ],
type = include)
pkd <- chromPeakData(object)[rownames(pks), , drop = FALSE]
if (!filled) {
pks <- pks[!pkd$is_filled, , drop = FALSE]
pkd <- extractROWS(pkd, which(!pkd$is_filled))
}
smpls <- factor(pks[, "sample"], levels = lvls)
pk_list[[i]] <- split.data.frame(pks, smpls)
pkd_list[[i]] <- split.data.frame(pkd, smpls)
}
pks <- do.call(rbind, pk_list)
pks <- pks[seq_along(pks)]
pkd <- do.call(rbind, pkd_list)
pkd <- pkd[seq_along(pkd)]
} else {
pks <- chromPeaks(object, rt = rt, mz = mz,
type = include)
pkd <- chromPeakData(object)[rownames(pks), , drop = FALSE]
if (!filled) {
pks <- pks[!pkd$is_filled, , drop = FALSE]
pkd <- extractROWS(pkd, which(!pkd$is_filled))
}
smpls <- factor(pks[, "sample"], levels = lvls)
pks <- split.data.frame(pks, smpls)
pkd <- split.data.frame(pkd, smpls)
}
res <- as(res, "XChromatograms")
res@.Data <- matrix(
mapply(unlist(res), pks, pkd, FUN = function(chr, pk, pd) {
chr@chromPeaks <- pk
chr@chromPeakData <- pd
chr
}), nrow = nrow(res), dimnames = dimnames(res))
res@.processHistory <- object@.processHistory
if (hasFeatures(object)) {
pks_sub <- chromPeaks(res)
## Loop through each EIC "row" to ensure all features in
## that EIC are retained.
fts <- lapply(seq_len(nrow(res)), function(r) {
fdev <- featureDefinitions(object, mz = mz(res)[r, ],
rt = rt)
if (nrow(fdev)) {
fdev$row <- r
.subset_features_on_chrom_peaks(
fdev, chromPeaks(object), pks_sub)
} else DataFrame()
})
res@featureDefinitions <- do.call(rbind, fts)
}
validObject(res)
res
})
#' @rdname XCMSnExp-class
#'
#' @aliases faahko_sub
#'
#' @description
#'
#' \code{findChromPeaks} performs chromatographic peak detection
#' on the provided \code{XCMSnExp} objects. For more details see the method
#' for \code{\linkS4class{XCMSnExp}}.
#' Note that by default (with parameter \code{add = FALSE}) previous peak
#' detection results are removed. Use \code{add = TRUE} to perform a second
#' round of peak detection and add the newly identified peaks to the previous
#' peak detection results. Correspondence results (features) are always removed
#' prior to peak detection. Previous alignment (retention
#' time adjustment) results are kept, i.e. chromatographic peak detection
#' is performed using adjusted retention times if the data was first
#' aligned using e.g. obiwarp (\code{\link{adjustRtime-obiwarp}}).
#'
#' @param param A \code{\link{CentWaveParam}}, \code{\link{MatchedFilterParam}},
#' \code{\link{MassifquantParam}}, \code{\link{MSWParam}} or
#' \code{\link{CentWavePredIsoParam}} object with the settings for the
#' chromatographic peak detection algorithm.
#'
#' @param add For \code{findChromPeaks}: if newly identified chromatographic
#' peaks should be added to the peak matrix with the already identified
#' chromatographic peaks. By default (\code{add = FALSE}) previous
#' peak detection results will be removed.
#'
#' @inheritParams findChromPeaks-centWave
setMethod("findChromPeaks",
signature(object = "XCMSnExp", param = "Param"),
function(object, param, BPPARAM = bpparam(),
return.type = "XCMSnExp", msLevel = 1L, add = FALSE) {
## Remove previous correspondence results.
if (hasFeatures(object)) {
message("Removed feature definitions.")
object <- dropFeatureDefinitions(
object,
keepAdjustedRtime = hasAdjustedRtime(object))
}
## Remove previous chromatographic peaks.
has_peaks <- hasChromPeaks(object)
if (has_peaks & !add) {
message("Removed previously identified chromatographic peaks.")
object <- dropChromPeaks(
object,
keepAdjustedRtime = hasAdjustedRtime(object))
}
if (add && has_peaks) {
old_cp <- chromPeaks(object)
old_cpd <- chromPeakData(object)
}
meth <- selectMethod("findChromPeaks",
signature = c(object = "OnDiskMSnExp",
param = class(param)))
object <- do.call(meth, args = list(object = object,
param = param,
BPPARAM = BPPARAM,
return.type = return.type,
msLevel = msLevel))
if (add && has_peaks) {
old_cp <- rbindFill(old_cp, chromPeaks(object))
old_cpd <- rbindFill(old_cpd, chromPeakData(object))
old_hist <- object@.processHistory
chromPeaks(object) <- old_cp
rownames(old_cpd) <- rownames(chromPeaks(object))
chromPeakData(object) <- old_cpd
object@.processHistory <- old_hist
}
## object@.processHistory <- list()
validObject(object)
object
})
#' @aliases fillChromPeaks
#'
#' @title Integrate areas of missing peaks
#'
#' @description
#'
#' Integrate signal in the mz-rt area of a feature (chromatographic
#' peak group) for samples in which no chromatographic peak for this
#' feature was identified and add it to the [chromPeaks()] matrix. Such
#' *filled-in* peaks are indicated with a `TRUE` in column `"is_filled"` in
#' the result object's [chromPeakData()] data frame.
#'
#' Two different gap-filling approaches are implemented:
#'
#' - `param = FillChromPeaksParam()`: the default of the original `xcms` code.
#' Signal is integrated from the m/z and retention time range as defined in
#' the [featureDefinitions()] data frame, i.e. from the `"rtmin"`, `"rtmax"`,
#' `"mzmin"` and `"mzmax"`. See details below for more information and
#' settings for this method.
#'
#' - `param = ChromPeakAreaParam()`: the area from which the signal for a
#' feature is integrated is defined based on the feature's chromatographic
#' peak areas. The m/z range is by default defined as the the lower quartile
#' of chromatographic peaks' `"mzmin"` value to the upper quartile of the
#' chromatographic peaks' `"mzmax"` values. The retention time range for the
#' area is defined analogously. Alternatively, by setting `mzmin = median`,
#' `mzmax = median`, `rtmin = median` and `rtmax = median` in
#' `ChromPeakAreaParam`, the median `"mzmin"`, `"mzmax"`, `"rtmin"` and
#' `"rtmax"` values from all detected chromatographic peaks of a feature
#' would be used instead.
#' In contrast to the `FillChromPeaksParam` approach this method uses the
#' actual identified chromatographic peaks of a feature to define the area
#' from which the signal should be integrated.
#'
#' @details
#'
#' After correspondence (i.e. grouping of chromatographic peaks across
#' samples) there will always be features (peak groups) that do not include
#' peaks from every sample. The `fillChromPeaks` method defines
#' intensity values for such features in the missing samples by integrating
#' the signal in the mz-rt region of the feature. Two different approaches
#' to define this region are available: with `ChromPeakAreaParam` the region
#' is defined based on the detected **chromatographic peaks** of a feature,
#' while with `FillChromPeaksParam` the region is defined based on the m/z and
#' retention times of the **feature** (which represent the m/z and retentention
#' times of the apex position of the associated chromatographic peaks). For the
#' latter approach various parameters are available to increase the area from
#' which signal is to be integrated, either by a constant value (`fixedMz` and
#' `fixedRt`) or by a feature-relative amount (`expandMz` and `expandRt`).
#'
#' Adjusted retention times will be used if available.
#'
#' Based on the peak finding algorithm that was used to identify the
#' (chromatographic) peaks, different internal functions are used to
#' guarantee that the integrated peak signal matches as much as possible
#' the peak signal integration used during the peak detection. For peaks
#' identified with the [matchedFilter()] method, signal
#' integration is performed on the *profile matrix* generated with
#' the same settings used also during peak finding (using the same
#' `bin` size for example). For direct injection data and peaks
#' identified with the `MSW` algorithm signal is integrated
#' only along the mz dimension. For all other methods the complete (raw)
#' signal within the area is used.
#'
#' @note
#'
#' The reported `"mzmin"`, `"mzmax"`, `"rtmin"` and
#' `"rtmax"` for the filled peaks represents the actual MS area from
#' which the signal was integrated.
#' Note that no peak is filled in if no signal was present in a file/sample
#' in the respective mz-rt area. These samples will still show a `NA`
#' in the matrix returned by the [featureValues()] method.
#'
#' @param object `XCMSnExp` object with identified and grouped chromatographic
#' peaks.
#'
#' @param param `FillChromPeaksParam` or `ChromPeakAreaParam` object
#' defining which approach should be used (see details section).
#'
#' @param mzmin `function` to be applied to values in the `"mzmin"` column of all
#' chromatographic peaks of a feature to define the lower m/z value of the
#' area from which signal for the feature should be integrated. Defaults to
#' `mzmin = function(z) quantile(z, probs = 0.25)` hence using the 25%
#' quantile of all values.
#'
#' @param mzmax `function` to be applied to values in the `"mzmax"` column of all
#' chromatographic peaks of a feature to define the upper m/z value of the
#' area from which signal for the feature should be integrated. Defaults to
#' `mzmax = function(z) quantile(z, probs = 0.75)` hence using the 75%
#' quantile of all values.
#'
#' @param rtmin `function` to be applied to values in the `"rtmin"` column of all
#' chromatographic peaks of a feature to define the lower rt value of the
#' area from which signal for the feature should be integrated. Defaults to
#' `rtmin = function(z) quantile(z, probs = 0.25)` hence using the 25%
#' quantile of all values.
#'
#' @param rtmax `function` to be applied to values in the `"rtmax"` column of all
#' chromatographic peaks of a feature to define the upper rt value of the
#' area from which signal for the feature should be integrated. Defaults to
#' `rtmax = function(z) quantile(z, probs = 0.75)` hence using the 75%
#' quantile of all values.
#'
#' @param expandMz for `FillChromPeaksParam`: `numeric(1)` defining the value
#' by which the mz width of peaks should be expanded. Each peak is expanded
#' in mz direction by `expandMz *` their original m/z width. A value of
#' `0` means no expansion, a value of `1` grows each peak by `1 *` the m/z
#' width of the peak resulting in peaks with twice their original size in
#' m/z direction (expansion by half m/z width to both sides).
#'
#' @param expandRt for `FillChromPeaksParam`: `numeric(1)`, same as `expandMz`
#' but for the retention time width.
#'
#' @param ppm for `FillChromPeaksParam`: `numeric(1)` optionally specifying a
#' *ppm* by which the m/z width of the peak region should be expanded. For
#' peaks with an m/z width smaller than `mean(c(mzmin, mzmax)) * ppm / 1e6`,
#' the `mzmin` will be replaced by
#' `mean(c(mzmin, mzmax)) - (mean(c(mzmin, mzmax)) * ppm / 2 / 1e6)`
#' `mzmax` by
#' `mean(c(mzmin, mzmax)) + (mean(c(mzmin, mzmax)) * ppm / 2 / 1e6)`.
#' This is applied before eventually expanding the m/z width using the
#' `expandMz` parameter.
#'
#' @param fixedMz for `FillChromPeaksParam`: `numeric(1)` defining a constant
#' factor by which the m/z width of each feature is to be expanded.
#' The m/z width is expanded on both sides by `fixedMz` (i.e. `fixedMz`
#' is subtracted from the lower m/z and added to the upper m/z). This
#' expansion is applied *after* `expandMz` and `ppm`.
#'
#' @param fixedRt for `FillChromPeaksParam`: `numeric(1)` defining a constant
#' factor by which the retention time width of each factor is to be
#' expanded. The rt width is expanded on both sides by `fixedRt` (i.e.
#' `fixedRt` is subtracted from the lower rt and added to the upper rt).
#' This expansion is applied *after* `expandRt`.
#'
#' @param msLevel `integer(1)` defining the MS level on which peak filling
#' should be performed (defaults to `msLevel = 1L`). Only peak filling
#' on one MS level at a time is supported, to fill in peaks for MS level 1
#' and 2 run first using `msLevel = 1` and then (on the returned
#' result object) again with `msLevel = 2`.
#'
#' @param BPPARAM Parallel processing settings.
#'
#' @return
#'
#' A `XCMSnExp` object with previously missing chromatographic peaks for
#' features filled into its [chromPeaks()] matrix.
#'
#' @rdname fillChromPeaks
#'
#' @author Johannes Rainer
#'
#' @seealso [groupChromPeaks()] for methods to perform the correspondence.
#'
#' @md
#'
#' @examples
#'
#' ## Load a test data set with identified chromatographic peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#' res <- faahko_sub
#'
#' ## Disable parallel processing for this example
#' register(SerialParam())
#'
#' ## Perform the correspondence. We assign all samples to the same group.
#' res <- groupChromPeaks(res,
#' param = PeakDensityParam(sampleGroups = rep(1, length(fileNames(res)))))
#'
#' ## For how many features do we lack an integrated peak signal?
#' sum(is.na(featureValues(res)))
#'
#' ## Filling missing peak data using the peak area from identified
#' ## chromatographic peaks.
#' res <- fillChromPeaks(res, param = ChromPeakAreaParam())
#'
#' ## How many missing values do we have after peak filling?
#' sum(is.na(featureValues(res)))
#'
#' ## Get the peaks that have been filled in:
#' fp <- chromPeaks(res)[chromPeakData(res)$is_filled, ]
#' head(fp)
#'
#' ## Get the process history step along with the parameters used to perform
#' ## The peak filling:
#' ph <- processHistory(res, type = "Missing peak filling")[[1]]
#' ph
#'
#' ## The parameter class:
#' ph@param
#'
#' ## It is also possible to remove filled-in peaks:
#' res <- dropFilledChromPeaks(res)
#'
#' sum(is.na(featureValues(res)))
setMethod("fillChromPeaks",
signature(object = "XCMSnExp", param = "FillChromPeaksParam"),
function(object, param, msLevel = 1L, BPPARAM = bpparam()) {
if (length(msLevel) != 1)
stop("Can only perform peak filling for one MS level at a time")
if (!hasFeatures(object, msLevel = msLevel))
stop("No feature definitions for MS level ", msLevel,
" present. Please run 'groupChromPeaks' first.")
if (.hasFilledPeaks(object))
message("Filled peaks already present, adding still missing",
" peaks.")
if (hasChromPeaks(object) & !.has_chrom_peak_data(object))
object <- updateObject(object)
startDate <- date()
expandMz <- expandMz(param)
expandRt <- expandRt(param)
fixedMz <- fixedMz(param)
fixedRt <- fixedRt(param)
ppm <- ppm(param)
message("Defining peak areas for filling-in .",
appendLF = FALSE)
## Define or extend the peak area from which the signal should be
## extracted.
## Original code: use the median of the min/max rt and mz per peak.
fdef <- featureDefinitions(object, msLevel = msLevel)
aggFunLow <- median
aggFunHigh <- median
## Note: we ensure in the downstream function that the rt range is
## within the rt range. For the mz range it doesn't matter.
tmp_pks <- chromPeaks(object)[, c("rtmin", "rtmax", "mzmin",
"mzmax")]
pkArea <- do.call(
rbind,
lapply(
fdef$peakidx, function(z) {
pa <- c(aggFunLow(tmp_pks[z, 1]),
aggFunHigh(tmp_pks[z, 2]),
aggFunLow(tmp_pks[z, 3]),
aggFunHigh(tmp_pks[z, 4]))
## Check if we have to apply ppm replacement:
if (ppm != 0) {
mzmean <- mean(pa[3:4])
tittle <- mzmean * (ppm / 2) / 1E6
if ((pa[4] - pa[3]) < (tittle * 2)) {
pa[3] <- mzmean - tittle
pa[4] <- mzmean + tittle
}
}
## Expand it.
if (expandRt != 0) {
diffRt <- (pa[2] - pa[1]) * expandRt / 2
pa[1] <- pa[1] - diffRt
pa[2] <- pa[2] + diffRt
}
if (expandMz != 0) {
diffMz <- (pa[4] - pa[3]) * expandMz / 2
pa[3] <- pa[3] - diffMz
pa[4] <- pa[4] + diffMz
}
if (fixedMz != 0) {
pa[3] <- pa[3] - fixedMz
pa[4] <- pa[4] + fixedMz
}
if (fixedRt != 0) {
pa[1] <- pa[1] - fixedRt
pa[2] <- pa[2] + fixedRt
}
pa
}
))
rm(tmp_pks)
message(".", appendLF = FALSE)
colnames(pkArea) <- c("rtmin", "rtmax", "mzmin", "mzmax")
## Add mzmed column - needed for MSW peak filling.
pkArea <- cbind(group_idx = 1:nrow(pkArea), pkArea,
mzmed = as.numeric(fdef$mzmed))
pkGrpVal <- featureValues(object, value = "index",
msLevel = msLevel)
message(".", appendLF = FALSE)
## Check if there is anything to fill...
if (!any(is.na(rowSums(pkGrpVal)))) {
message("No missing peaks present.")
return(object)
}
message(".", appendLF = FALSE)
## Split the object by file and define the peaks for which
objectL <- vector("list", length(fileNames(object)))
pkAreaL <- objectL
## We need "only" a list of OnDiskMSnExp, one for each file but
## instead of filtering by file we create small objects to keep
## memory requirement to a minimum.
req_fcol <- requiredFvarLabels("OnDiskMSnExp")
min_fdata <- fData(object)[, req_fcol]
rt_range <- range(pkArea[, c("rtmin", "rtmax")])
if (hasAdjustedRtime(object))
min_fdata$retentionTime <- adjustedRtime(object)
for (i in 1:length(fileNames(object))) {
fd <- min_fdata[min_fdata$fileIdx == i, ]
fd$fileIdx <- 1L
objectL[[i]] <- new(
"OnDiskMSnExp",
processingData = new("MSnProcess",
files = fileNames(object)[i]),
featureData = new("AnnotatedDataFrame", fd),
phenoData = new("NAnnotatedDataFrame",
data.frame(sampleNames = "1")),
experimentData = new("MIAPE",
instrumentManufacturer = "a",
instrumentModel = "a",
ionSource = "a",
analyser = "a",
detectorType = "a"))
## Want to extract intensities only for peaks that were not
## found in a sample.
pkAreaL[[i]] <- pkArea[is.na(pkGrpVal[, i]), , drop = FALSE]
}
rm(pkGrpVal)
rm(pkArea)
rm(min_fdata)
message(" OK\nStart integrating peak areas from original files")
## Get to know what algorithm was used for the peak detection.
## Special cases are MSWParam (no retention time) and
## MatchedFilterParam (integrate from profile matrix).
ph <- processHistory(object, type = .PROCSTEP.PEAK.DETECTION)
findPeakMethod <- "unknown"
mzCenterFun <- "wMean"
if (length(ph)) {
if (is(ph[[1]], "XProcessHistory")) {
prm <- ph[[1]]@param
findPeakMethod <- .param2string(prm)
## Check if the param class has a mzCenterFun slot
if (.hasSlot(prm, "mzCenterFun"))
mzCenterFun <- prm@mzCenterFun
}
}
cp_colnames <- colnames(chromPeaks(object))
## Now rename that to the correct function name in xcms.
mzCenterFun <- paste("mzCenter",
gsub(mzCenterFun, pattern = "mzCenter.",
replacement = "", fixed = TRUE), sep=".")
if (findPeakMethod == "MSW") {
rts <- rtime(object, bySample = TRUE)
## Ensure that we REALLY have direct injection data.
if (any(lengths(rts) > 1))
stop("The data is supposed to be direct injection data, ",
"but I got files with more than one spectrum/",
"retention time!")
## That's not working, because integration uses the rt.
res <- bpmapply(FUN = .getMSWPeakData, objectL,
pkAreaL, as.list(1:length(objectL)),
MoreArgs = list(
cn = cp_colnames),
BPPARAM = BPPARAM, SIMPLIFY = FALSE)
} else if (findPeakMethod == "matchedFilter") {
res <- bpmapply(FUN = .getChromPeakData_matchedFilter,
objectL, pkAreaL, as.list(1:length(objectL)),
MoreArgs = list(cn = cp_colnames,
param = prm,
msLevel = msLevel),
BPPARAM = BPPARAM, SIMPLIFY = FALSE)
} else {
res <- bpmapply(FUN = .getChromPeakData, objectL,
pkAreaL, as.list(1:length(objectL)),
MoreArgs = list(cn = cp_colnames,
mzCenterFun = mzCenterFun,
msLevel = msLevel),
BPPARAM = BPPARAM, SIMPLIFY = FALSE)
}
rm(objectL)
res <- do.call(rbind, res)
## cbind the group_idx column to track the feature/peak group.
res <- cbind(
res, group_idx = unlist(lapply(pkAreaL,
function(z) z[, "group_idx"]),
use.names = FALSE))
## Remove those without a signal
res <- res[!is.na(res[, "into"]), , drop = FALSE]
if (nrow(res) == 0) {
warning("Could not integrate any signal for the missing ",
"peaks! Consider increasing 'expandMz' and 'expandRt'.")
return(object)
}
## Intermediate cleanup of objects.
rm(pkAreaL)
gc()
## Get the msFeatureData:
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
object@msFeatureData <- new("MsFeatureData")
incr <- nrow(chromPeaks(newFd))
for (i in unique(res[, "group_idx"])) {
fdef$peakidx[[i]] <- c(fdef$peakidx[[i]],
(which(res[, "group_idx"] == i) + incr))
}
## Combine feature data with those from other MS levels
fdef <- rbind(
fdef, featureDefinitions(newFd)[
featureDefinitions(newFd)$ms_level != msLevel, ,
drop = FALSE])
if (!any(colnames(fdef) == "ms_level"))
fdef$ms_level <- 1L
else
fdef <- fdef[order(fdef$ms_level), ]
## Define IDs for the new peaks; include fix for issue #347
maxId <- max(as.numeric(
sub("M", "", sub("^CP", "", rownames(chromPeaks(newFd))))))
if (maxId < 1)
stop("chromPeaks matrix lacks rownames; please update ",
"'object' with the 'updateObject' function.")
toId <- maxId + nrow(res)
rownames(res) <- sprintf(
paste0("CP", "%0", ceiling(log10(toId + 1L)), "d"),
(maxId + 1L):toId)
chromPeaks(newFd) <- rbind(chromPeaks(newFd),
res[, -ncol(res)])
cpd <- extractROWS(chromPeakData(newFd), rep(1L, nrow(res)))
cpd[,] <- NA
cpd$ms_level <- as.integer(msLevel)
cpd$is_filled <- TRUE
if (!any(colnames(chromPeakData(newFd)) == "is_filled"))
chromPeakData(newFd)$is_filled <- FALSE
chromPeakData(newFd) <- rbind(chromPeakData(newFd), cpd)
rownames(chromPeakData(newFd)) <- rownames(chromPeaks(newFd))
featureDefinitions(newFd) <- fdef
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
## Add a process history step
ph <- XProcessHistory(param = param,
date. = startDate,
type. = .PROCSTEP.PEAK.FILLING,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, ph) ## this also validates object.
object
})
#' @rdname fillChromPeaks
setMethod("fillChromPeaks",
signature(object = "XCMSnExp", param = "ChromPeakAreaParam"),
function(object, param, msLevel = 1L, BPPARAM = bpparam()) {
if (length(msLevel) != 1)
stop("Can only perform peak filling for one MS level at a time")
if (!hasFeatures(object, msLevel = msLevel))
stop("No feature definitions for MS level ", msLevel,
" present. Please run 'groupChromPeaks' first.")
if (.hasFilledPeaks(object))
message("Filled peaks already present, adding still missing",
" peaks.")
if (hasChromPeaks(object) & !.has_chrom_peak_data(object))
object <- updateObject(object)
startDate <- date()
message("Defining peak areas for filling-in .",
appendLF = FALSE)
fts_region <- .features_ms_region(
object, mzmin = param@mzmin, mzmax = param@mzmax,
rtmin = param@rtmin, rtmax = param@rtmax, msLevel = msLevel)
fts_region <- cbind(group_idx = seq_len(nrow(fts_region)),
fts_region,
mzmed = featureDefinitions(object)$mzmed)
message(".", appendLF = FALSE)
pk_idx <- featureValues(object, value = "index",
msLevel = msLevel)
message(".", appendLF = FALSE)
## Check if there is anything to fill...
if (!any(is.na(rowSums(pk_idx)))) {
message("No missing peaks present.")
return(object)
}
## Split the object by file and define the peaks for which
objectL <- vector("list", length(fileNames(object)))
pkAreaL <- objectL
## We need "only" a list of OnDiskMSnExp, one for each file but
## instead of filtering by file we create small objects to keep
## memory requirement to a minimum.
req_fcol <- requiredFvarLabels("OnDiskMSnExp")
min_fdata <- fData(object)[, req_fcol]
if (hasAdjustedRtime(object))
min_fdata$retentionTime <- adjustedRtime(object)
for (i in 1:length(fileNames(object))) {
fd <- min_fdata[min_fdata$fileIdx == i, ]
fd$fileIdx <- 1L
objectL[[i]] <- new(
"OnDiskMSnExp",
processingData = new("MSnProcess",
files = fileNames(object)[i]),
featureData = new("AnnotatedDataFrame", fd),
phenoData = new("NAnnotatedDataFrame",
data.frame(sampleNames = "1")),
experimentData = new("MIAPE",
instrumentManufacturer = "a",
instrumentModel = "a",
ionSource = "a",
analyser = "a",
detectorType = "a"))
## Want to extract intensities only for peaks that were not
## found in a sample.
pkAreaL[[i]] <- fts_region[is.na(pk_idx[, i]), , drop = FALSE]
}
rm(pk_idx)
rm(fts_region)
rm(min_fdata)
message(" OK\nStart integrating peak areas from original files")
## Get to know what algorithm was used for the peak detection.
## Special cases are MSWParam (no retention time) and
## MatchedFilterParam (integrate from profile matrix).
ph <- processHistory(object, type = .PROCSTEP.PEAK.DETECTION)
findPeakMethod <- "unknown"
mzCenterFun <- "wMean"
if (length(ph)) {
if (is(ph[[1]], "XProcessHistory")) {
prm <- ph[[1]]@param
findPeakMethod <- .param2string(prm)
## Check if the param class has a mzCenterFun slot
if (.hasSlot(prm, "mzCenterFun"))
mzCenterFun <- prm@mzCenterFun
}
}
cp_colnames <- colnames(chromPeaks(object))
## Now rename that to the correct function name in xcms.
mzCenterFun <- paste("mzCenter",
gsub(mzCenterFun, pattern = "mzCenter.",
replacement = "", fixed = TRUE), sep=".")
if (findPeakMethod == "MSW") {
rts <- rtime(object, bySample = TRUE)
## Ensure that we REALLY have direct injection data.
if (any(lengths(rts) > 1))
stop("The data is supposed to be direct injection data, ",
"but I got files with more than one spectrum/",
"retention time!")
## That's not working, because integration uses the rt.
res <- bpmapply(FUN = .getMSWPeakData, objectL,
pkAreaL, as.list(1:length(objectL)),
MoreArgs = list(
cn = cp_colnames),
BPPARAM = BPPARAM, SIMPLIFY = FALSE)
} else if (findPeakMethod == "matchedFilter") {
res <- bpmapply(FUN = .getChromPeakData_matchedFilter,
objectL, pkAreaL, as.list(1:length(objectL)),
MoreArgs = list(cn = cp_colnames,
param = prm,
msLevel = msLevel),
BPPARAM = BPPARAM, SIMPLIFY = FALSE)
} else {
res <- bpmapply(FUN = .getChromPeakData, objectL,
pkAreaL, as.list(1:length(objectL)),
MoreArgs = list(cn = cp_colnames,
mzCenterFun = mzCenterFun,
msLevel = msLevel),
BPPARAM = BPPARAM, SIMPLIFY = FALSE)
}
rm(objectL)
res <- do.call(rbind, res)
## cbind the group_idx column to track the feature/peak group.
res <- cbind(
res, group_idx = unlist(lapply(pkAreaL,
function(z) z[, "group_idx"]),
use.names = FALSE))
## Remove those without a signal
res <- res[!is.na(res[, "into"]), , drop = FALSE]
if (nrow(res) == 0) {
warning("Could not integrate any signal for the missing ",
"peaks!")
return(object)
}
## Intermediate cleanup of objects.
rm(pkAreaL)
## Get the msFeatureData:
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
object@msFeatureData <- new("MsFeatureData")
incr <- nrow(chromPeaks(newFd))
fdef <- featureDefinitions(newFd, msLevel = msLevel)
for (i in unique(res[, "group_idx"])) {
fdef$peakidx[[i]] <- c(fdef$peakidx[[i]],
(which(res[, "group_idx"] == i) + incr))
}
## Combine feature data with those from other MS levels
fdef <- rbind(fdef,
extractROWS(
featureDefinitions(newFd),
which(featureDefinitions(newFd)$ms_level != msLevel)))
if (!any(colnames(fdef) == "ms_level"))
fdef$ms_level <- 1L
else
fdef <- extractROWS(fdef, order(fdef$ms_level))
## Define IDs for the new peaks; include fix for issue #347
maxId <- max(as.numeric(
sub("M", "", sub("^CP", "", rownames(chromPeaks(newFd))))))
if (maxId < 1)
stop("chromPeaks matrix lacks rownames; please update ",
"'object' with the 'updateObject' function.")
toId <- maxId + nrow(res)
rownames(res) <- sprintf(
paste0("CP", "%0", ceiling(log10(toId + 1L)), "d"),
(maxId + 1L):toId)
chromPeaks(newFd) <- rbind(chromPeaks(newFd),
res[, -ncol(res)])
cpd <- extractROWS(chromPeakData(newFd), rep(1L, nrow(res)))
cpd[,] <- NA
cpd$ms_level <- as.integer(msLevel)
cpd$is_filled <- TRUE
if (!any(colnames(chromPeakData(newFd)) == "is_filled"))
chromPeakData(newFd)$is_filled <- FALSE
chromPeakData(newFd) <- rbind(chromPeakData(newFd), cpd)
rownames(chromPeakData(newFd)) <- rownames(chromPeaks(newFd))
featureDefinitions(newFd) <- fdef
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
## Add a process history step
ph <- XProcessHistory(param = param,
date. = startDate,
type. = .PROCSTEP.PEAK.FILLING,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, ph) ## this also validates object.
object
})
#' @rdname fillChromPeaks
setMethod(
"fillChromPeaks",
signature(object = "XCMSnExp", param = "missing"),
function(object,
param,
BPPARAM = bpparam(),
msLevel = 1L) {
fillChromPeaks(object, param = FillChromPeaksParam(),
BPPARAM = BPPARAM, msLevel = msLevel)
})
#' @aliases dropFilledChromPeaks
#'
#' @description
#'
#' \code{dropFilledChromPeaks}: drops any filled-in chromatographic
#' peaks (filled in by the \code{\link{fillChromPeaks}} method) and all
#' related process history steps.
#'
#' @rdname XCMSnExp-class
#'
#' @seealso \code{\link{fillChromPeaks}} for the method to fill-in eventually
#' missing chromatographic peaks for a feature in some samples.
setMethod("dropFilledChromPeaks", "XCMSnExp", function(object) {
if (!.hasFilledPeaks(object))
return(object)
keep_pks <- which(!chromPeakData(object)$is_filled)
object@msFeatureData <- .filterChromPeaks(object@msFeatureData, keep_pks)
object <- dropProcessHistories(object, type = .PROCSTEP.PEAK.FILLING)
validObject(object)
object
})
#' @aliases extractMsData
#'
#' @title DEPRECATED: Extract a `data.frame` containing MS data
#'
#' @description
#'
#' **UPDATE**: the `extractMsData` and `plotMsData` functions are deprecated
#' and `as(x, "data.frame")` and `plot(x, type = "XIC")` (`x` being an
#' `OnDiskMSnExp` or `XCMSnExp` object) should be used instead. See examples
#' below. Be aware that filtering the raw object might however drop the
#' adjusted retention times. In such cases it is advisable to use the
#' [applyAdjustedRtime()] function prior to filtering.
#'
#'
#' Extract a `data.frame` of retention time, mz and intensity
#' values from each file/sample in the provided rt-mz range (or for the full
#' data range if `rt` and `mz` are not defined).
#'
#' @param object A `XCMSnExp` or `OnDiskMSnExp` object.
#'
#' @param rt `numeric(2)` with the retention time range from which the
#' data should be extracted.
#'
#' @param mz `numeric(2)` with the mz range.
#'
#' @param msLevel `integer` defining the MS level(s) to which the data
#' should be sub-setted prior to extraction; defaults to
#' `msLevel = 1L`.
#'
#' @param adjustedRtime (for `extractMsData,XCMSnExp`): `logical(1)`
#' specifying if adjusted or raw retention times should be reported.
#' Defaults to adjusted retention times, if these are present in
#' `object`.
#'
#' @return
#'
#' A `list` of length equal to the number of samples/files in
#' `object`. Each element being a `data.frame` with columns
#' `"rt"`, `"mz"` and `"i"` with the retention time, mz and
#' intensity tuples of a file. If no data is available for the mz-rt range
#' in a file a `data.frame` with 0 rows is returned for that file.
#'
#' @seealso `XCMSnExp` for the data object.
#'
#' @rdname extractMsData-method
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @examples
#'
#' ## Load a test data set with detected peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#'
#' ## Disable parallel processing for this example
#' register(SerialParam())
#'
#' ## Extract the full MS data for a certain retention time range
#' ## as a data.frame
#' tmp <- filterRt(faahko_sub, rt = c(2800, 2900))
#' ms_all <- as(tmp, "data.frame")
#' head(ms_all)
#' nrow(ms_all)
setMethod("extractMsData", "XCMSnExp",
function(object, rt, mz, msLevel = 1L,
adjustedRtime = hasAdjustedRtime(object)){
.Deprecated(msg = paste0("Use of 'extractMsData' is deprecated.",
" Please use 'as(x, \"data.frame\")'"))
## Now, this method takes the adjusted rts, casts the object to
## an OnDiskMSnExp, eventually replaces the rtime in the
## featureData with the adjusted retention times (depending on
## adjustedRtime and calls the method for OnDiskMSnExp.
if (adjustedRtime & hasAdjustedRtime(object)) {
fData(object)$retentionTime <- rtime(object, adjusted = TRUE)
}
object <- as(object, "OnDiskMSnExp")
extractMsData(object, rt = rt, mz = mz, msLevel = msLevel)
})
#' @rdname calibrate-calibrant-mass
#'
#' @param object An [XCMSnExp] object.
#'
#' @param param The `CalibrantMassParam` object with the calibration settings.
#'
#' @return
#'
#' The `calibrate` method returns an [XCMSnExp] object with the
#' chromatographic peaks being calibrated. Note that **only** the detected
#' peaks are calibrated, but not the individual mz values in each spectrum.
#'
#' @md
setMethod("calibrate", "XCMSnExp", function(object, param) {
if (missing(param)) {
stop("Argument 'param' is missing")
} else {
if (!is(param, "CalibrantMassParam"))
stop("The calibrate method for 'XCMSnExp' objects requires a ",
"'CalibrantMassParam' object to be passed with argument ",
"'param'")
}
if (isCalibrated(object))
stop("'object' is already calibrated! Recurrent calibrations are not ",
"supported")
mzs <- .mz(param)
n_samps <- length(fileNames(object))
if (length(mzs) == 1)
mzs <- replicate(mzs[[1]], n = n_samps, simplify = FALSE)
if (length(mzs) != n_samps)
stop("Number of calibrant mz vectors differs from the number of samples")
startDate <- date()
## Dropping grouping results.
object <- dropFeatureDefinitions(object)
pks <- chromPeaks(object)
adj_models <- vector("list", length = n_samps)
method <- .method(param)
for (i in 1:n_samps) {
## This could also be done with indices...
pk_mz <- pks[pks[, "sample"] == i, c("mz", "into")]
order_mz <- order(pk_mz[, 1])
close_pks <- .matchpeaks2(pk_mz[order_mz, ], mzs[[i]],
mzabs = .mzabs(param), mzppm = .mzppm(param),
neighbours = .neighbors(param))
if (nrow(close_pks) == 0) {
warning("Sample ", i, ": can not calibrate as no peaks are close to",
"provided mz values")
next
} else {
if (nrow(close_pks) == 1 & method != "shift") {
warning("Sample ", i, ": only a single peak found, falling ",
"back to method = 'shift'")
method <- "shift"
}
}
prms <- estimate(close_pks, method)
adj_models[[i]] <- prms
a <- prms[1] # slope
b <- prms[2] # intercept
mz_ <- pk_mz[order_mz, 1]
mz_min <- mz_[min(close_pks[, "pos"])]
mz_max <- mz_[max(close_pks[, "pos"])]
pk_mz[order_mz, "mz"] <- .calibrate_mz(mz_, method = method,
minMz = mz_min, maxMz = mz_max,
slope = a, intercept = b)
pks[pks[, "sample"] == i, "mz"] <- pk_mz[, "mz"]
}
## Set the new peak definitions. Careful to not drop additional stuff here.
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
chromPeaks(newFd) <- pks
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
## Add param to processHistory
xph <- XProcessHistory(param = param, date. = startDate,
type. = .PROCSTEP.CALIBRATION,
fileIndex = 1:n_samps)
object <- addProcessHistory(object, xph)
validObject(object)
object
})
#' @description
#'
#' \code{spectrapply} applies the provided function to each
#' \code{Spectrum} in the object and returns its
#' results. If no function is specified the function simply returns the
#' \code{list} of \code{Spectrum} objects.
#'
#' @param FUN For \code{spectrapply}: a function that should be applied to each
#' spectrum in the object.
#'
#' @rdname XCMSnExp-class
setMethod("spectrapply", "XCMSnExp", function(object, FUN = NULL,
BPPARAM = bpparam(), ...) {
## replace raw with adjusted retention times!
if (hasAdjustedRtime(object))
fData(object)$retentionTime <- rtime(object, adjusted = TRUE)
callNextMethod()
})
#' @description
#'
#' \code{split} splits an \code{XCMSnExp} object into a \code{list}
#' of \code{XCMSnExp} objects based on the provided parameter \code{f}.
#' Note that by default all pre-processing results are removed by the
#' splitting, except adjusted retention times, if the optional argument
#' \code{keepAdjustedRtime = TRUE} is provided.
#'
#' @param f For \code{split} a vector of length equal to the length of x
#' defining how \code{x} will be splitted. It is converted internally to
#' a \code{factor}.
#'
#' @rdname XCMSnExp-filter-methods
setMethod("split", "XCMSnExp", function(x, f,
drop = FALSE, ...) {
if (drop)
stop("'drop = TRUE' is not supported")
if (missing(f))
stop("required argument 'f' is missing")
if (length(f) != length(x))
stop("length of 'f' has to match the length of 'x'")
keepAdjustedRtime <- list(...)$ke
if (is.null(keepAdjustedRtime))
keepAdjustedRtime <- FALSE
if (!is.factor(f))
f <- factor(f)
res <- lapply(levels(f), function(z) {
suppressWarnings(
x[f == z, keepAdjustedRtime = keepAdjustedRtime]
)
})
names(res) <- levels(f)
res
})
#' @description
#'
#' \code{XCMSnExp} objects can be combined with the \code{c} function. This
#' combines identified chromatographic peaks and the objects' pheno data but
#' discards alignment results or feature definitions.
#'
#' @rdname XCMSnExp-class
c.XCMSnExp <- function(...) {
.concatenate_XCMSnExp(...)
}
#' @title Generate unique group (feature) names based on mass and retention time
#'
#' @description
#'
#' `groupnames` generates names for the identified features from the
#' correspondence analysis based in their mass and retention time. This
#' generates feature names that are equivalent to the group names of the *old*
#' user interface (aka xcms1).
#'
#' @param object `XCMSnExp` object containing correspondence results.
#'
#' @param mzdec `integer(1)` with the number of decimal places to use for m/z (
#' defaults to `0`).
#'
#' @param rtdec `integer(1)` with the number of decimal places to use for the
#' retention time (defaults to `0`).
#'
#' @param template `character` with existing group names whose format should
#' be emulated.
#'
#' @return
#'
#' `character` with unique names for each feature in `object`. The
#' format is `M(m/z)T(time in seconds)`.
#'
#' @seealso [XCMSnExp].
#'
#' @md
#'
#' @rdname groupnames-XCMSnExp
setMethod("groupnames", "XCMSnExp", function(object, mzdec = 0, rtdec = 0,
template = NULL) {
if (!hasFeatures(object))
stop("No feature data present! Use 'groupChromPeaks' first")
if (!missing(template)) {
tempsplit <- strsplit(template[1], "[T_]")
tempsplit <- strsplit(unlist(tempsplit), "\\.")
if (length(tempsplit[[1]]) > 1)
mzdec <- nchar(tempsplit[[1]][2])
else
mzdec <- 0
if (length(tempsplit[[2]]) > 1)
rtdec <- nchar(tempsplit[[2]][2])
else
rtdec <- 0
}
mzfmt <- paste0("%.", mzdec, "f")
rtfmt <- paste0("%.", rtdec, "f")
gnames <- paste0("M", sprintf(mzfmt, featureDefinitions(object)$mzmed),
"T", sprintf(rtfmt, featureDefinitions(object)$rtmed))
if (any(dup <- duplicated(gnames)))
for (dupname in unique(gnames[dup])) {
dupidx <- which(gnames == dupname)
gnames[dupidx] <- paste(gnames[dupidx], seq(along = dupidx),
sep = "_")
}
gnames
})
#' @title Export MS data to mzML/mzXML files
#'
#' @description
#'
#' `writeMSData` exports mass spectrometry data in mzML or mzXML format.
#' If adjusted retention times are present, these are used as retention time of
#' the exported spectra.
#'
#' @param object [XCMSnExp] object with the mass spectrometry data.
#'
#' @param file `character` with the file name(s). The length of this parameter
#' has to match the number of files/samples of `object`.
#'
#' @param outformat `character(1)` defining the format of the output files (
#' either `"mzml"` or `"mzxml"`).
#'
#' @param copy `logical(1)` if metadata (data processing, software used,
#' original file names etc) should be copied from the original files.
#'
#' @param software_processing optionally provide specific data processing steps.
#' See documentation of the `software_processing` parameter of
#' [mzR::writeMSData()].
#'
#' @param ... Additional parameters to pass down to the [writeMSData()]
#' function in the `MSnbase` package, such as `outformat` to specify the
#' output format (`"mzml"` or `"mzxml"`) or `copy` to specify whether
#' general information from the original MS data files (such as data
#' processing, software etc) should be copied to the new files.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @seealso [writeMSData()] function in the `MSnbase` package.
setMethod("writeMSData", signature(object = "XCMSnExp", file = "character"),
function(object, file, outformat = c("mzml", "mzxml"),
copy = FALSE, software_processing = NULL, ...) {
if (hasAdjustedRtime(object)) {
object <- applyAdjustedRtime(object)
## Define the software processing.
software_processing <- c(
software_processing,
list(c("xcms", paste(packageVersion("xcms"),
collapse = "."),
"MS:1001582", "MS:1000745")))
}
callNextMethod(object = object, file = file,
outformat = outformat, copy = copy,
software_processing = software_processing, ...)
})
#' @title Plot chromatographic peak density along the retention time axis
#'
#' @aliases plotChromPeakDensity
#'
#' @description
#'
#' Plot the density of chromatographic peaks along the retention
#' time axis and indicate which peaks would be (or were) grouped into the
#' same feature based using the *peak density* correspondence method.
#' Settings for the *peak density* method can be passed with an
#' [PeakDensityParam] object to parameter `param`. If the `object` contains
#' correspondence results and the correspondence was performed with the
#' *peak groups* method, the results from that correspondence can be
#' visualized setting `simulate = FALSE`.
#'
#' @details
#'
#' The `plotChromPeakDensity` function allows to evaluate
#' different settings for the *peak density* on an mz slice of
#' interest (e.g. containing chromatographic peaks corresponding to a known
#' metabolite).
#' The plot shows the individual peaks that were detected within the
#' specified `mz` slice at their retention time (x-axis) and sample in
#' which they were detected (y-axis). The density function is plotted as a
#' black line. Parameters for the `density` function are taken from the
#' `param` object. Grey rectangles indicate which chromatographic peaks
#' would be grouped into a feature by the `peak density` correspondence
#' method. Parameters for the algorithm are also taken from `param`.
#' See [groupChromPeaks-density()] for more information about the
#' algorithm and its supported settings.
#'
#' @param object A [XCMSnExp] object with identified
#' chromatographic peaks.
#'
#' @param mz `numeric(2)` defining an mz range for which the peak density
#' should be plotted.
#'
#' @param rt `numeric(2)` defining an optional rt range for which the
#' peak density should be plotted. Defaults to the absolute retention time
#' range of `object`.
#'
#' @param param [PeakDensityParam] from which parameters for the
#' *peak density* correspondence algorithm can be extracted. If not provided
#' and if `object` contains feature definitions with the correspondence/
#' peak grouping being performed by the *peak density* method, the
#' corresponding parameter class stored in `object` is used.
#'
#' @param simulate `logical(1)` defining whether correspondence should be
#' simulated within the specified m/z / rt region or (with
#' `simulate = FALSE`) whether the results from an already performed
#' correspondence should be shown.
#'
#' @param col Color to be used for the individual samples. Length has to be 1
#' or equal to the number of samples in `object`.
#'
#' @param xlab `character(1)` with the label for the x-axis.
#'
#' @param ylab `character(1)` with the label for the y-axis.
#'
#' @param xlim `numeric(2)` representing the limits for the x-axis.
#' Defaults to the range of the `rt` parameter.
#'
#' @param main `character(1)` defining the title of the plot. By default
#' (for `main = NULL`) the mz-range is used.
#'
#' @param type `character(1)` specifying how peaks are called to be located
#' within the region defined by `mz` and `rt`. Can be one of `"any"`,
#' `"within"`, and `"apex_within"` for all peaks that are even partially
#' overlapping the region, peaks that are completely within the region, and
#' peaks for which the apex is within the region. This parameter is passed
#' to the [chromPeaks] function. See related documentation for more
#' information and examples.
#'
#' @param ... Additional parameters to be passed to the `plot` function. Data
#' point specific parameters such as `bg` or `pch` have to be of length 1
#' or equal to the number of samples.
#'
#' @return The function is called for its side effect, i.e. to create a plot.
#'
#' @author Johannes Rainer
#'
#' @seealso [groupChromPeaks-density()] for details on the
#' *peak density* correspondence method and supported settings.
#'
#' @md
#'
#' @rdname plotChromPeakDensity
#'
#' @examples
#'
#' ## Load a test data set with detected peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#'
#' ## Plot the chromatographic peak density for a specific mz range to evaluate
#' ## different peak density correspondence settings.
#' mzr <- c(305.05, 305.15)
#'
#' plotChromPeakDensity(faahko_sub, mz = mzr, pch = 16,
#' param = PeakDensityParam(sampleGroups = rep(1, length(fileNames(faahko_sub)))))
#'
setMethod("plotChromPeakDensity", "XCMSnExp", .plotChromPeakDensity)
setMethod("updateObject", "XCMSnExp", function(object) {
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
if (hasChromPeaks(newFd)) {
if (is.null(rownames(chromPeaks(newFd))))
rownames(chromPeaks(newFd)) <-
.featureIDs(nrow(chromPeaks(newFd)), "CP")
if (!.has_chrom_peak_data(newFd)) {
newFd$chromPeakData <- DataFrame(
ms_level = rep(1L, nrow(chromPeaks(newFd))),
row.names = rownames(chromPeaks(newFd)))
if (any(colnames(chromPeaks(newFd)) == "is_filled")) {
newFd$chromPeakData$is_filled <- as.logical(
chromPeaks(newFd)[, "is_filled"])
newFd$chromPeaks <-
newFd$chromPeaks[, colnames(newFd$chromPeaks) != "is_filled"]
} else
newFd$chromPeakData$is_filled <- FALSE
}
if (hasFeatures(newFd) &&
!any(colnames(featureDefinitions(newFd)) == "ms_level"))
newFd$featureDefinitions$ms_level <- 1L
}
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
if (!length(object@.processHistory))
object@.processHistory <- list()
validObject(object)
object
})
#' @rdname XCMSnExp-class
setMethod("chromPeakData", "XCMSnExp", function(object) {
chromPeakData(object@msFeatureData)
})
#' @rdname XCMSnExp-class
setReplaceMethod("chromPeakData", "XCMSnExp", function(object, value) {
newFd <- new("MsFeatureData")
newFd@.xData <- .copy_env(object@msFeatureData)
chromPeakData(newFd) <- value
lockEnvironment(newFd, bindings = TRUE)
object@msFeatureData <- newFd
validObject(object)
object
})
#' @description
#'
#' \code{plot} plots the spectrum data (see \code{\link{plot}} for
#' \code{\link{MSnExp}} objects in the \code{MSnbase} package for more details.
#' For \code{type = "XIC"}, identified chromatographic peaks will be indicated
#' as rectangles with border color \code{peakCol}.
#'
#' @param x For \code{plot}: \code{XCMSnExp} object.
#'
#' @param y For \code{plot}: not used.
#'
#' @param peakCol For \code{plot}: the color that should be used to indicate
#' identified chromatographic peaks (only in combination with
#' \code{type = "XIC"} and if chromatographic peaks are present).
#'
#' @rdname XCMSnExp-class
setMethod("plot", c("XCMSnExp", "missing"),
function(x, y, type = c("spectra", "XIC"),
peakCol = "#ff000060", ...) {
type <- match.arg(type)
if (type == "spectra" || !hasChromPeaks(x))
callNextMethod(x = x, type = type, ...)
else .plot_XIC(x, peakCol = peakCol, ...)
})
#' @title Remove chromatographic peaks with too large rt width
#'
#' @aliases refineChromPeaks CleanPeaksParam-class show,CleanPeaksParam-method
#'
#' @description
#'
#' Remove chromatographic peaks with a retention time range larger than the
#' provided maximal acceptable width (`maxPeakwidth`).
#'
#' @note
#'
#' `refineChromPeaks` methods will always remove feature definitions, because
#' a call to this method can change or remove identified chromatographic peaks,
#' which may be part of features.
#'
#' @param maxPeakwidth for `CleanPeaksParam`: `numeric(1)` defining the maximal
#' allowed peak width (in retention time).
#'
#' @param msLevel `integer` defining for which MS level(s) the chromatographic
#' peaks should be cleaned.
#'
#' @param object [XCMSnExp] object with identified chromatographic peaks.
#'
#' @param param `CleanPeaksParam` object defining the settings for the method.
#'
#' @return `XCMSnExp` object with chromatographic peaks exceeding the specified
#' maximal retention time width being removed.
#'
#' @author Johannes Rainer
#'
#' @md
#'
#' @family chromatographic peak refinement methods
#'
#' @rdname refineChromPeaks-clean
#'
#' @examples
#'
#' ## Load a test data set with detected peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#'
#' ## Disable parallel processing for this example
#' register(SerialParam())
#'
#' ## Distribution of chromatographic peak widths
#' quantile(chromPeaks(faahko_sub)[, "rtmax"] - chromPeaks(faahko_sub)[, "rtmin"])
#'
#' ## Remove all chromatographic peaks with a width larger 60 seconds
#' data <- refineChromPeaks(faahko_sub, param = CleanPeaksParam(60))
#'
#' quantile(chromPeaks(data)[, "rtmax"] - chromPeaks(data)[, "rtmin"])
setMethod("refineChromPeaks", c(object = "XCMSnExp", param = "CleanPeaksParam"),
function(object, param = CleanPeaksParam(),
msLevel = 1L) {
if (!hasChromPeaks(object, msLevel = msLevel)) {
warning("No chromatographic peaks present in for MS level ",
msLevel, ". Please run 'findChromPeaks' first.")
return(object)
}
if (hasFeatures(object)) {
message("Removing feature definitions.")
object <- dropFeatureDefinitions(object)
}
validObject(param)
rtwidths <- chromPeaks(object)[, "rtmax"] -
chromPeaks(object)[, "rtmin"]
sel_ms <- chromPeakData(object)$ms_level %in% msLevel
sel_rt <- rtwidths < param@maxPeakwidth & sel_ms
keep <- which(sel_rt | !sel_ms)
message("Removed ", nrow(chromPeaks(object)) - length(keep),
" of ", nrow(chromPeaks(object)),
" chromatographic peaks.")
msf <- new("MsFeatureData")
msf@.xData <- .copy_env(object@msFeatureData)
chromPeaks(msf) <- chromPeaks(object)[keep, , drop = FALSE]
chromPeakData(msf) <- extractROWS(chromPeakData(object), keep)
object@msFeatureData <- msf
ph <- processHistory(object, type = .PROCSTEP.PEAK.DETECTION)
xph <- XProcessHistory(param = param, date. = date(),
type. = .PROCSTEP.PEAK.REFINEMENT,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
validObject(object)
object
})
#' @title Merge neighboring and overlapping chromatographic peaks
#'
#' @aliases MergeNeighboringPeaksParam-class show,MergeNeighboringPeaksParam-method
#'
#' @description
#'
#' Peak detection sometimes fails to identify a chromatographic peak correctly,
#' especially for broad peaks and if the peak shape is irregular (mostly for
#' HILIC data). In such cases several smaller peaks are reported. Also, peak
#' detection can result in partially or completely overlapping peaks. To reduce
#' such peak detection artifacts, this function merges chromatographic peaks
#' which are overlapping or close in rt and m/z dimension considering also the
#' measured signal intensities in the region between them.
#'
#' Chromatographic peaks are first expanded in m/z and retention time dimension
#' (based on parameters `expandMz`, `ppm` and `expandRt`) and subsequently
#' grouped into sets of merge candidates if they are (after expansion)
#' overlapping in both m/z and rt (within the same sample).
#' Candidate peaks are merged if the average intensity of the 3 data
#' points in the middle position between them (i.e. at half the distance between
#' `"rtmax"` of the first and `"rtmin"` of the second peak) is larger than a
#' certain proportion (`minProp`) of the smaller maximal intensity (`"maxo"`)
#' of both peaks. In cases in which this calculated mid point is **not**
#' located between the apexes of the two peaks (e.g. if the peaks are largely
#' overlapping) the average signal intensity at half way between the apexes is
#' used instead. Candidate peaks are not joined if all 3 data points between
#' them have `NA` intensities.
#' The joined peaks get the `"mz"`, `"rt"`, `"sn"` and `"maxo"` values from
#' the peak with the largest signal (`"maxo"`) as well as its row in the
#' metadata data frame of the peak (`chromPeakData`). The `"rtmin"`, `"rtmax"`
#' of the merged peaks are updated and `"into"` is recalculated based on all
#' the signal between `"rtmin"` and `"rtmax"` of the new merged peak. See
#' details for information on the `"mzmin"` and `"mzmax"` values of the merged
#' peak.
#'
#' @note
#'
#' Note that **each** peak gets expanded by `expandMz` and `expandRt`, thus
#' peaks differing by `2 * expandMz` (or `expandRt`) will be identified as
#' *overlapping*. As an example: m/z max of one peak is 12.2, m/z min of
#' another one is 12.4, if `expandMz = 0.1` the m/z max of the first peak
#' will be 12.3 and the m/z min of the second one 12.3, thus both are
#' considered overlapping.
#'
#' `refineChromPeaks` methods will always remove feature definitions, because
#' a call to this method can change or remove identified chromatographic peaks,
#' which may be part of features.
#'
#' Merging of chromatographic peaks is performed along the retention time axis,
#' i.e. candidate peaks are first ordered by their `"rtmin"` value. The signals
#' at half way between the first and the second candidate peak are then compared
#' to the smallest `"maxo"` of both and the two peaks are then merged if the
#' average signal between the peaks is larger `minProp`. For merging any
#' additional peak in a candidate peak list the `"maxo"` of that peak and the
#' newly merged peak are considered.
#'
#' @details
#'
#' For each set of candidate peaks an ion chromatogram is
#' extracted using the range of retention times and m/z values of these peaks.
#' The m/z range for the extracted ion chromatogram is expanded by `expandMz`
#' and `ppm` (on both sides) to reduce the possibility of missing signal
#' intensities between candidate peaks (variance of measured m/z values for
#' lower intensities is larger than for higher intensities and thus data points
#' not being part of identified chromatographic peaks tend to have m/z values
#' outside of the m/z range of the candidate peaks - especially for ToF
#' instruments). This also ensures that all data points from the same ion are
#' considered for the peak integration of merged peaks. The smallest and largest
#' m/z value of all data points used in the peak integration of the merged peak
#' are used as the merged peak's m/z range (i.e. columns `"mzmin"` and `"mzmax"`).
#'
#' @param expandRt `numeric(1)` defining by how many seconds the retention time
#' window is expanded on both sides to check for overlapping peaks.
#'
#' @param expandMz `numeric(1)` constant value by which the m/z range of each
#' chromatographic peak is expanded (on both sides!) to check for
#' overlapping peaks.
#'
#' @param ppm `numeric(1)` defining a m/z relative value (in parts per million)
#' by which the m/z range of each chromatographic peak is expanded
#' to check for overlapping peaks.
#'
#' @param minProp `numeric(1)` between `0` and `1` representing the proporion
#' of intensity to be required for peaks to be joined. See description for
#' more details. The default (`minProp = 0.75`) means that peaks are only
#' joined if the signal half way between then is larger 75% of the smallest
#' of the two peak's `"maxo"` (maximal intensity at peak apex).
#'
#' @param msLevel `integer` defining for which MS level(s) the chromatographic
#' peaks should be merged.
#'
#' @param object [XCMSnExp] object with identified chromatographic peaks.
#'
#' @param param `MergeNeighboringPeaksParam` object defining the settings for
#' the method.
#'
#' @param BPPARAM parameter object to set up parallel processing. Uses the
#' default parallel processing setup returned by `bpparam()`. See
#' [bpparam()] for details and examples.
#'
#' @return `XCMSnExp` object with chromatographic peaks matching the defined
#' conditions being merged.
#'
#' @author Johannes Rainer, Mar Garcia-Aloy
#'
#' @md
#'
#' @family chromatographic peak refinement methods
#'
#' @rdname refineChromPeaks-merge
#'
#' @examples
#'
#' ## Load a test data set with detected peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#'
#' ## Disable parallel processing for this example
#' register(SerialParam())
#'
#' ## Subset to a single file
#' xd <- filterFile(faahko_sub, file = 1)
#'
#' ## Example of a split peak that will be merged
#' mzr <- 305.1 + c(-0.01, 0.01)
#' chr <- chromatogram(xd, mz = mzr, rt = c(2700, 3700))
#' plot(chr)
#'
#' ## Combine the peaks
#' res <- refineChromPeaks(xd, param = MergeNeighboringPeaksParam(expandRt = 4))
#' chr_res <- chromatogram(res, mz = mzr, rt = c(2700, 3700))
#' plot(chr_res)
#'
#' ## Example of a peak that was not merged, because the signal between them
#' ## is lower than the cut-off minProp
#' mzr <- 496.2 + c(-0.01, 0.01)
#' chr <- chromatogram(xd, mz = mzr, rt = c(3200, 3500))
#' plot(chr)
#' chr_res <- chromatogram(res, mz = mzr, rt = c(3200, 3500))
#' plot(chr_res)
setMethod("refineChromPeaks", c(object = "XCMSnExp",
param = "MergeNeighboringPeaksParam"),
function(object, param = MergeNeighboringPeaksParam(),
msLevel = 1L, BPPARAM = bpparam()) {
if (!hasChromPeaks(object, msLevel = msLevel)) {
warning("No chromatographic peaks present in for MS level ",
msLevel, ". Please run 'findChromPeaks' first.")
return(object)
}
if (hasFeatures(object)) {
message("Removing feature definitions.")
object <- dropFeatureDefinitions(object)
}
validObject(param)
peak_count <- nrow(chromPeaks(object))
res <- bplapply(.split_by_file2(object, msLevel. = msLevel,
to_class = "XCMSnExp",
subsetFeatureData = TRUE,
keep_sample_idx = TRUE),
FUN = .merge_neighboring_peaks,
expandRt = param@expandRt,
expandMz = param@expandMz, ppm = param@ppm,
minProp = param@minProp,
BPPARAM = BPPARAM)
pks <- do.call(rbind, lapply(res, "[[", 1))
pkd <- do.call(rbind, lapply(res, "[[", 2))
## Add also peaks for other MS levels!
other_msl <- !(chromPeakData(object)$ms_level %in% msLevel)
if (any(other_msl)) {
pks <- rbind(pks, chromPeaks(object)[other_msl, , drop = FALSE])
pkd <- rbind(pkd, extractROWS(chromPeakData(object), which(other_msl)))
}
which_new <- is.na(rownames(pks))
pkd$merged <- which_new
max_id <- max(as.numeric(sub("CP", "", rownames(pks))),
na.rm = TRUE)
if (!is.finite(max_id))
max_id <- 0
rownames(pks)[which_new] <- .featureIDs(sum(which_new),
prefix = "CPM",
from = max_id + 1)
rownames(pkd) <- rownames(pks)
message("Merging reduced ", peak_count, " chromPeaks to ",
nrow(pks), ".")
msf <- new("MsFeatureData")
msf@.xData <- .copy_env(object@msFeatureData)
chromPeaks(msf) <- pks
chromPeakData(msf) <- pkd
object@msFeatureData <- msf
ph <- processHistory(object, type = .PROCSTEP.PEAK.DETECTION)
xph <- XProcessHistory(param = param, date. = date(),
type. = .PROCSTEP.PEAK.REFINEMENT,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
validObject(object)
object
})
#' @title Remove chromatographic peaks based on intensity
#'
#' @aliases FilterIntensityParam-class show,FilterIntensityParam-method
#'
#' @description
#'
#' Remove chromatographic peaks with intensities below the specified threshold.
#' By default, with `nValues = 1`, all peaks with an intensity
#' `>= threshold` are retained. Parameter `value` allows to specify the column of
#' the [chromPeaks()] matrix that should be used for the filtering (defaults to
#' `value = "maxo"` and thus evaluating the maximal intensity for each peak).
#' With `nValues > 1` it is possible to keep only peaks that have `nValues`
#' intensities `>= threshold`. Note that this requires data import from the
#' original MS files and run time of the call can thus be significantly larger.
#' Also, for `nValues > 1` parameter `value` is ignored.
#'
#' @param threshold `numeric(1)` defining the minimal required intensity for
#' a peak to be retained. Defaults to `threshold = 0`.
#'
#' @param nValues `integer(1)` defining the number of data points (per
#' chromatographic peak) that have to be `>= threshold`. Defaults to
#' `nValues = 1`.
#'
#' @param value `character(1)` specifying the column in [chromPeaks()] that
#' should be used for the comparison. This is ignored for `nValues > 1`.
#'
#' @param msLevel `integer(1)` defining the MS level in which peaks should be
#' filtered.
#'
#' @param object [XCMSnExp] object with identified chromatographic peaks.
#'
#' @param param `FilterIntensityParam` object defining the settings for
#' the method.
#'
#' @param BPPARAM parameter object to set up parallel processing. Uses the
#' default parallel processing setup returned by `bpparam()`. See
#' [bpparam()] for details and examples.
#'
#' @return `XCMSnExp` object with filtererd chromatographic peaks.
#'
#' @author Johannes Rainer, Mar Garcia-Aloy
#'
#' @md
#'
#' @family chromatographic peak refinement methods
#'
#' @rdname refineChromPeaks-filter-intensity
#'
#' @examples
#'
#' ## Load a test data set with detected peaks
#' data(faahko_sub)
#' ## Update the path to the files for the local system
#' dirname(faahko_sub) <- system.file("cdf/KO", package = "faahKO")
#'
#' ## Disable parallel processing for this example
#' register(SerialParam())
#'
#' ## Remove all peaks with a maximal intensity below 50000
#' res <- refineChromPeaks(faahko_sub, param = FilterIntensityParam(threshold = 50000))
#'
#' nrow(chromPeaks(faahko_sub))
#' nrow(chromPeaks(res))
#'
#' all(chromPeaks(res)[, "maxo"] > 50000)
#'
#' ## Keep only chromatographic peaks that have 3 signals above 20000; we
#' ## perform this on the data of a single file.
#' xdata <- filterFile(faahko_sub)
#'
#' res <- refineChromPeaks(xdata, FilterIntensityParam(threshold = 20000, nValues = 3))
#' nrow(chromPeaks(xdata))
#' nrow(chromPeaks(res))
setMethod("refineChromPeaks", c(object = "XCMSnExp",
param = "FilterIntensityParam"),
function(object, param = FilterIntensityParam(),
msLevel = 1L, BPPARAM = bpparam()) {
if (!hasChromPeaks(object, msLevel = msLevel)) {
warning("No chromatographic peaks present in for MS level ",
msLevel, ". Please run 'findChromPeaks' first.")
return(object)
}
if (hasFeatures(object)) {
message("Removing feature definitions.")
object <- dropFeatureDefinitions(object)
}
validObject(param)
peak_count <- nrow(chromPeaks(object))
if (param@nValues == 1) {
## Simple subsetting of the chromPeaks matrix.
if (!any(colnames(chromPeaks(object)) %in% param@value))
stop("Column '", value, "' not found in chromPeaks matrix")
keep <- chromPeaks(object)[, param@value] >= param@threshold |
!chromPeakData(object)$ms_level %in% msLevel
} else {
res <- bplapply(.split_by_file2(object, to_class = "XCMSnExp",
msLevel = 1:10),
FUN = .chrom_peaks_above_threshold,
nValues = param@nValues,
threshold = param@threshold,
msLevel = msLevel, BPPARAM = BPPARAM)
keep <- unlist(res, use.names = FALSE)
if (length(keep) != nrow(chromPeaks(object)))
stop("Length of variable 'keep' does not match number ",
"of peaks. Please contact developers.")
}
msfd <- .filterChromPeaks(object, idx = which(keep))
object@msFeatureData <- msfd
message("Removed ", peak_count - nrow(chromPeaks(object)),
" chromatographic peaks.")
ph <- processHistory(object, type = .PROCSTEP.PEAK.DETECTION)
xph <- XProcessHistory(param = param, date. = date(),
type. = .PROCSTEP.PEAK.REFINEMENT,
fileIndex = 1:length(fileNames(object)),
msLevel = msLevel)
object <- addProcessHistory(object, xph)
validObject(object)
object
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.