R/mstmap14.R

Defines functions pValue alignCross profileGen statGen profileMark statMark combineMap pushCross pullCross pp.init fixClones genClones quickEst mstmap.data.frame subsetCross mergeCross breakCross mstmap.cross mstmap.default mstmap

Documented in alignCross breakCross combineMap fixClones genClones mergeCross mstmap mstmap.cross mstmap.data.frame mstmap.default pp.init profileGen profileMark pullCross pushCross pValue quickEst statGen statMark subsetCross

mstmap <- function(object, ...)
    UseMethod("mstmap")

mstmap.default <- function(object, ...)
      stop("Only \"data.frame\" and \"cross\" methods are available. See specific help files for more details.")

mstmap.cross <- function(object, chr, id = "Genotype", bychr = TRUE, suffix = "numeric",
                   anchor = FALSE, dist.fun = "kosambi", objective.fun = "COUNT",
                   p.value=1e-6, noMap.dist = 15.0, noMap.size = 0, miss.thresh = 1.0,
                   mvest.bc = FALSE, detectBadData = FALSE, return.imputed = FALSE, trace = FALSE, ...) {
    if(!(id %in% names(object$pheno)))
         stop("The unique identifier for the genotypes, ", deparse(substitute(id)),
              ", cannot be found in the object")
    if(!inherits(object, c("bc","dh","riself","bcsft")))
        stop("Cross object must inherit from one of the classes \"bc\", \"dh\",\"riself\",\"bcsft\". See ?mstmap.cross for more details.")
    if(!(dist.fun %in% c("haldane","kosambi")))
        stop("Distance function needs to be \"haldane\" or \"kosambi\" (see ?mstmap.cross).")
    if(!(objective.fun %in% c("COUNT","ML")))
        stop("Objective function needs to be \"COUNT\" or \"ML\" (see ?mstmap.cross).")
    if((miss.thresh > 1) | miss.thresh < 0)
        stop("Missing value threshold is required to be between 0 and 1.")
    if(class(object)[1] %in% c("bc","dh","riself")){
        pop.type <- "DH"
        allele <- c("A","B","")
    }
    if(class(object)[1] %in% "bcsft"){
        scheme <- attr(object, "scheme")
        if(scheme[1] > 0)
            stop("\"bcsft\" type is restricted to selfed populations only.")
        err <- lapply(object$geno, function(el){
            if(any(c(4,5) %in% el$data))
                stop("Only selfed populations with fully informative markers allowed. See ?mstmap.cross for more details.")})
        pop.type <- paste("RIL", scheme[2], sep = "")
        allele <- c("A","X","B")
    }
    if(trace) trace <- "MSToutput.txt"
    if (is.character(trace)) {
        ftrace <- file(trace, "w")
        sink(trace, type = "output", append = FALSE)
        on.exit(sink(type = "output"))
        on.exit(close(ftrace), add = TRUE)
        trace <- TRUE
    }
    oldObject <- NULL
    if(!missing(chr)) {
        oldObject <- subset(object, paste("-", chr, sep =""))
        object <- subset(object, chr)
    }
    geno <- as.character(object$pheno[[id]])
    lmat <- lapply(object$geno, function(el, geno, allele) {
                   rownames(el$data) <- geno
                   el$data[el$data == 1] <- allele[1]
                   el$data[el$data == 2] <- allele[2]
                   el$data[el$data == 3] <- allele[3]
                   el$data[is.na(el$data)] <- "U"
                   t(el$data)
               }, geno, allele)
    mn <- markernames(object)
    if(!bychr) {
        names(object$geno) <- ochr <- paste("ALL", 1:length(object$geno), sep = "")
        object$geno$"L"$data <- do.call("cbind", lapply(object$geno, function(el) el$data))
        object$geno$"L"$map <- unlist(lapply(object$geno, function(el) el$map))
        class(object$geno$"L") <- class(object$geno[[1]])
        lmat <- list(do.call("rbind", lmat))
        names(object$geno$"L"$map) <- rownames(lmat[[1]]) <- mn
        object <- subset(object, paste("-", ochr, sep = ""))
    }
    nm <- names(object$geno)
    param <- list("population_type"=pop.type,
                "distance_function"=dist.fun,
                "cut_off_p_value"=as.double(p.value),
                "no_map_dist"=as.double(noMap.dist),
                "no_map_size"=as.integer(noMap.size),
                "missing_threshold"=as.double(miss.thresh),
                "estimation_before_clustering"=as.integer(mvest.bc),
                "detect_bad_data"=as.integer(detectBadData),
                "objective_function"=objective.fun,
                trace=as.integer(trace))
    omit.list <- list()
    for(i in 1:length(lmat)){
        mst <- .Call("mst", param, as.data.frame(lmat[[i]], stringsAsFactors = FALSE))
        if (class(object)[1] == "riself") {
            imf <- switch(dist.fun, haldane = imf.h, kosambi = imf.k)
            mf <- switch(dist.fun, haldane = mf.h, kosambi = mf.k)
            mst <- lapply(mst, function(el, imf, mf){
                nm <- names(el$map)
                rf <- mf(diff(el$map))
                rf <- (rf/2)/(1 - rf)
                el$map <- cumsum(c(0, imf(rf)))
                names(el$map) <- nm
                el
            }, imf, mf)
        }
        chrw <- nm[i]
        nmm <- names(object$geno[[chrw]]$map)
        if(anchor)
            mst <- lapply(mst, function(el, nmm){
                  nmms <- nmm[nmm %in% names(el$map)]
                  lens <- 1:length(nmms)
                  apos <- pmatch(nmms, names(el$map))
                  rpos <- pmatch(nmms, names(rev(el$map)))
                  if(sum(abs(rpos - lens)) < sum(abs(apos - lens))) {
                      el$map <- rev(el$map)
                      el$map <- abs(el$map - el$map[1])
                  }
                  el }, nmm)
        map <- lapply(mst, function(el) el$map)
        ordm <- pmatch(names(unlist(map)), nmm)
        if(any(is.na(ordm)))
            omit.list[[i]] <- object$geno[[chrw]]$data[,is.na(ordm), drop = FALSE]
        ordm <- ordm[!is.na(ordm)]
        object$geno[[chrw]]$data <- object$geno[[chrw]]$data[,ordm, drop = FALSE]
        object$geno[[chrw]]$map <- unlist(map)
        if(length(map) > 1){
            spl <- sapply(map, function(el) names(el)[length(el)])
            spl <- list(spl[1:(length(spl) - 1)])
            names(spl) <- chrw
            cobject <- subset(object, chr = chrw)
            cobject <- breakCross(cobject, split = spl, suffix = suffix)
            object$geno <- object$geno[!(names(object$geno) %in% chrw)]
            chrw <- names(cobject$geno)
            object$geno <- c(object$geno, cobject$geno)
        }
        if(return.imputed){
            imp <- lapply(mst, function(el){
                names(el)[2] <- "data"
                el$data <- t(el$data)
                el$map <- el$map[names(el$map) %in% dimnames(el$data)[[2]]]
                el$data <- el$data[,pmatch(names(el$map), dimnames(el$data)[[2]]),drop = FALSE]
                el})
            names(imp) <- chrw
            if(!is.null(object$imputed.geno))
                object$imputed.geno <- object$imputed.geno[!(names(object$imputed.geno) %in% chrw)]
            object$imputed.geno <- c(object$imputed.geno, imp)
            object$imputed.geno <- object$imputed.geno[mixedorder(names(object$imputed.geno))]
        }
    }
    if(exists("omit.list"))
        object$omit <- do.call("cbind", omit.list[!sapply(omit.list, is.null)])
    object$geno <- c(object$geno, oldObject$geno)
    object$geno <- object$geno[mixedorder(names(object$geno))]
    object
}

breakCross <- function(cross, split = NULL, suffix = "numeric", sep = "."){
    if(is.null(split))
        stop("Split cannot be null.")
    chr <- names(split)
    if(!all(chr %in% names(nmar(cross))))
        stop("Some linkage group names do not exist in linkage map.")
    if(is.character(suffix)){
        if(!all(suffix %in% c("numeric","alpha")))
            stop("Character values for post names must be a vector of either \"numeric\" or \"alpha\".")
        if((length(suffix) == 1) & length(chr) > 1)
            suffix <- rep(suffix, length(chr))
        suffix <- as.list(suffix)
        names(suffix) <- chr
    } else if(is.list(suffix)){
       if(!all(names(suffix) %in% names(split)))
           stop("Some linkage group names in argument suffix do not match names in argument split.")
       if(any(is.na(pm <- pmatch(chr, names(suffix)))))
           warning("Some linkage group names missing from suffix argument .. using \"numeric\".")
           pnam <- split
           pnam[is.na(pm)] <- "numeric"
           pe <- pm[!is.na(pm)]
           pnam[!is.na(pm)] <- suffix[pe]
           suffix <- pnam
   } else stop("Post names are of the wrong type, see ?breakCross.")
   for(i in chr){
        cmap <- names(cross$geno[[i]]$map)
        if(any(is.na(mmatch <- pmatch(split[[i]], cmap))))
            stop("Some marker names do not exist in specified linkage groups.")
        pm <- c(mmatch, length(cmap))
        if(any(c("numeric","alpha") %in% suffix[[i]]))
            p.nam <- paste(i, switch(suffix[[i]], numeric = 1:length(pm),
                                     alpha = LETTERS[1:length(pm)]), sep = sep)
        else p.nam <- suffix[[i]]
        if(length(p.nam) != length(pm))
            stop("Length of linkage group post names does match number of splits.")
        slg <- rep(p.nam, times = c(pm[1], diff(pm)))
        lg <- lapply(p.nam, function(el, gen, slg) {
            res <- list()
            res$data <- gen$data[,slg %in% el, drop = FALSE]
            res$map <- gen$map[slg %in% el]
            res$map <- res$map - res$map[1]
            class(res) <- class(gen)
            res
        }, gen = cross$geno[[i]], slg)
        names(lg) <- p.nam
        cross$geno <- cross$geno[!(names(cross$geno) %in% i)]
        cross$geno <- c(cross$geno, lg)
    }
    cross$geno <- cross$geno[mixedorder(names(cross$geno))]
    cross
}

mergeCross <- function(cross, merge = NULL, gap = 5){
   if(is.null(merge))
       stop("Need list of linkage groups to merge.")
   if(any(sapply(merge, length) < 2))
       stop("Number of linkages groups to merge must be 2 or greater")
   if(any(!(unlist(merge) %in% names(nmar(cross)))))
       stop("Some listed linkage groups do not appear in cross object")
   for(i in 1:length(merge)){
      nm <- nmar(cross)
      if(is.null(lnam <- names(merge[i])))
          lnam <- paste(merge[[i]], sep = "")
      whl <- pmatch(merge[[i]], names(nm))
      sc <- cross$geno[whl]
      sc[[1]]$data <- do.call("cbind", lapply(sc, function(el) el$data))
      mapd <- sc[[1]]$map
      for(j in 2:length(sc))
          mapd <- c(mapd, sc[[j]]$map + max(mapd)[1] + gap)
      sc[[1]]$map <- mapd
      names(sc[[1]]$map) <- dimnames(sc[[1]]$data)[[2]]
      sc <- sc[1]
      names(sc)[1] <- lnam
      cross$geno <- cross$geno[-whl]
      cross$geno <- c(cross$geno, sc)
   }
   cross$geno <- cross$geno[mixedorder(names(cross$geno))]
   cross
}

subsetCross <- function(cross, chr, ind, ...){
    if(!inherits(cross, c("bc","dh","riself","bcsft")))
        stop("Cross object must inherit from one of the classes \"bc\", \"dh\",\"riself\",\"bcsft\". See ?subsetCross for more details.")
    if(!missing(chr))
        cross <- subset(cross, chr = chr, ...)
    if(!missing(ind)){
        n.ind <- nind(cross)
        if(!(is.numeric(ind) | is.logical(ind)))
            stop("Argument ind can only be logical or numeric.")
        cross <- subset(cross, ind = ind, ...)
        if(is.numeric(ind) & all(ind < 0))
            ind <- (1:n.ind)[ind]
        type <- c("co.located","seg.distortion","missing")
        if(any(wh <- type %in% names(cross))){
            type <- type[wh]
            for(i in type){
                cross[[i]]$data <- cross[[i]]$data[ind,,drop = FALSE]
                tcross <- cross
                if(i %in% c("seg.distortion","missing")){
                    tcross$geno[[i]]$data <- cross[[i]]$data
                    tcross$geno[[i]]$map <- 1:ncol(cross[[i]]$data)
                    class(tcross$geno[[i]]) <- "A"
                    tab <- geno.table(tcross, chr = i, scanone.output = TRUE)
                    if(class(cross)[1] == "bcsft") tab <- tab[,1:(ncol(tab) - 2)]
                    cross[[i]]$table[,4:ncol(cross[[i]]$table)] <- tab[,3:ncol(tab)]
                }
            }
        }
    }
    cross
}

mstmap.data.frame <- function(object, pop.type= "DH", dist.fun = "kosambi",
                   objective.fun= "COUNT", p.value=1e-6, noMap.dist=15.0, noMap.size=0,
                   miss.thresh=1.0, mvest.bc=FALSE, detectBadData=FALSE,
                   as.cross = TRUE, return.imputed = FALSE, trace=FALSE, ...) {
    if(trace) trace <- "MSToutput.txt"
    if (is.character(trace)) {
        ftrace <- file(trace, "w")
        sink(trace, type = "output", append = FALSE)
        on.exit(sink(type = "output"))
        on.exit(close(ftrace), add = TRUE)
        trace <- TRUE
    }
    if(!all(sapply(object, is.character)) & !all(sapply(object, is.numeric)))
        stop("Columns of the marker data.frame must be all of type \"character\" or all of \"numeric\".")
    RILN <- paste("RIL",1:20, sep = "")
    allow.pop <- c("BC","DH","ARIL",RILN)
    if(!(pop.type %in% allow.pop))
        stop("Population type needs to be \"BC\",\"DH\",\"ARIL\" or \"RILn\" (see ?mstmap.data.frame).")
    if(pop.type %in% RILN) rnum <- substring(pop.type, 4, nchar(pop.type))
    if(!(dist.fun %in% c("haldane","kosambi")))
        stop("Distance function needs to be \"haldane\" or \"kosambi\" (see ?mstmap.data.frame).")
    if(!(objective.fun %in% c("COUNT","ML")))
        stop("Objective function needs to be \"COUNT\" or \"ML\" (see ?mstmap.data.frame).")
    alleles <- unique(unlist(lapply(object, unique)))
    allow.list <- c("A","a","B","b","-","U")
    ptype <- pop.type
    if(pop.type %in% c("BC","DH","ARIL")){
        if(all(sapply(object, is.numeric))){
            if(any(apply(object, 2, function(el) length(el[is.na(el)]))))
                stop("Numeric input cannot contain missing values")
            if(any(apply(object, 2, function(el) el < 0 | el > 1)))
                stop("Ony values between 0 and 1 are allowed if input is numeric.")
            if(as.cross)
                stop("Cross object cannot be returned for numeric input.")
        } else {
            if(!all(alleles %in% allow.list))
                stop("Non-allowable allele encodings in DH marker set")
            cons <- c("1", "1", "2", "2", NA, NA, NA)
        }
        pop.type <- "DH"
    } else {
        if(is.numeric(object))
            stop("Numeric input is not available for RILn populations.")
        allow.list <- c(allow.list, "X")
        if(!all(alleles %in% allow.list))
            stop("Non-allowable allele encodings in RIL marker set")
        cons <- c("1", "1", "3", "3", NA, NA, "2")
    }
    if(length(grep(" ", rownames(object)))){
        rownames(object) <- gsub(" ", "-", rownames(object))
        warning("Replacing spaces in genotype names with a "-" separator\n")
    }
    if(length(grep(" ", names(object)))){
        rownames(object) <- gsub(" ", "-", names(object))
        warning("Replacing spaces in marker nxames with a "-" separator\n")
    }
    dist.fun <- match.arg(dist.fun)
    objective.fun <- match.arg(objective.fun)
    param <- list("population_type"=pop.type,
                "distance_function"=dist.fun,
                "cut_off_p_value"=as.double(p.value),
                "no_map_dist"=as.double(noMap.dist),
                "no_map_size"=as.integer(noMap.size),
                "missing_threshold"=as.double(miss.thresh),
                "estimation_before_clustering"=as.integer(mvest.bc),
                "detect_bad_data"=as.integer(detectBadData),
                "objective_function"=objective.fun,
                trace=as.integer(trace))
    mst <- .Call("mst", param, object)
    map <- lapply(mst, function(el) el$map)
    marks <- unlist(lapply(map, names))
    ordm <- pmatch(marks, rownames(object))
    if(any(is.na(ordm)))
        omit.list <- t(object[is.na(ordm), drop = FALSE])
    ordm <- ordm[!is.na(ordm)]
    object <- object[ordm,]
    chn <- paste("L", 1:length(map), sep = "")
    if (ptype == "ARIL") {
        imf <- switch(dist.fun, haldane = imf.h, kosambi = imf.k)
        mf <- switch(dist.fun, haldane = mf.h, kosambi = mf.k)
        map <- lapply(map, function(el, imf, mf){
            nams <- names(el)
            rf <- mf(diff(el))
            rf <- (rf/2)/(1 - rf)
            el <- cumsum(c(0, imf(rf)))
            names(el) <- nams
            el
        }, imf, mf)
    }
    if(as.cross){
        co <- list()
        spl <- rep(1:length(map), times = sapply(map, length))
        object <- as.matrix(object)
        al <- allow.list %in% alleles
        cons <- cons[al]
        al <- allow.list[al]
        for(i in 1:length(al))
            object[object == al[i]] <- cons[i]
        dn <- dimnames(object)[[1]]
        object <- apply(object, 2, function(el) as.numeric(el))
        dimnames(object)[[1]] <- dn
        datm <- lapply(split.data.frame(object, spl), t)
        mo <- lapply(1:length(map), function(el, datm, map){
            temp <- list()
            temp$data <- datm[[el]]
            temp$map <- map[[el]]
            class(temp) <- "A"
            temp
        }, datm, map)
        co$geno <- mo
        names(co$geno) <- chn
        if(return.imputed){
             co$imputed.geno <- lapply(mst, function(el){
                names(el)[2] <- "data"
                el$data <- t(el$data)
                el$map <- el$map[names(el$map) %in% dimnames(el$data)[[2]]]
                el$data <- el$data[,pmatch(names(el$map), dimnames(el$data)[[2]]),drop = FALSE]
                el})
             names(co$imputed.geno) <- chn
         }
        co$pheno <- data.frame(Genotype = factor(dimnames(object)[[2]]))
        wp <- (1:23)[allow.pop %in% ptype]
        class(co) <- c(c("bc","dh","riself",rep("f2",20))[wp],"cross")
        if(wp %in% 4:23) co <- convert2bcsft(co, F.gen = wp - 3, estimate.map = FALSE)
        object <- co
    } else {
        do <- list()
        chrv <- rep(chn, times = sapply(map, length))
        dist <- unlist(map)
        do$geno <- cbind.data.frame(markers = marks, chr = chrv, dist = dist, object)
        rownames(do$geno) <- NULL
        if(return.imputed){
            imp <- lapply(mst, function(el){
                nm <- names(el$map)[names(el$map) %in% dimnames(el$imputed_values)[[1]]]
                pm <- pmatch(nm, dimnames(el$imputed_values)[[1]])
                el$imputed_values <- el$imputed_values[pm, , drop = FALSE]
                el$imputed_values })
            chri <- rep(chn, times = sapply(imp, function(el) dim(el)[1]))
            marki <- unlist(lapply(imp, rownames))
            disti <- dist[pmatch(marki, names(dist))]
            do$imputed.geno <- cbind.data.frame(markers = marki, chr = chri, disti = disti, do.call("rbind", imp))
            rownames(do$imputed.geno) <- NULL
        }
        object <- do
    }
    if(exists("omit.list"))
        object$omit <- omit.list
    object
}

heatMap <- function (x, chr, mark, what = c("both", "lod", "rf"),
  lmax = 12, rmin = 0, markDiagonal = FALSE, color = rev(colorRampPalette(brewer.pal(11,"Spectral"))(256)), ...)
{
    opar <- par(no.readonly = TRUE)
    if (!inherits(x, "cross"))
        stop("Input should have class \"cross\".")
    what <- match.arg(what)
    if ("onlylod" %in% names(attributes(x$rf)) && attr(x$rf, "onlylod")) {
        onlylod <- TRUE
        what <- "lod"
    }
    else onlylod <- FALSE
    if (!missing(chr))
        x <- subset(x, chr = chr)
    n.mar <- nmar(x)
    if(!missing(mark)){
        if(!is.list(mark))
            mark <- list(mark)
        if(length(mark) == 1){
            if(length(n.mar) != 1)
                mark <- rep(mark, length(n.mar))
            names(mark) <- names(n.mar)
        }
        if(!all(names(mark) %in% names(n.mar)))
            stop("Names of marker subsets do not match names of linkage groups.")
        for(i in names(mark)){
            if(max(mark[[i]]) > length(x$geno[[i]]$map))
               stop("Range of marker subset greater than the number of markers in linkage group")
            x$geno[[i]]$map <- x$geno[[i]]$map[mark[[i]]]
            x$geno[[i]]$data <- x$geno[[i]]$data[,mark[[i]]]
        }
    }
    if (!("rf" %in% names(x))) {
        warning("Running est.rf.")
        x <- est.rf(x)
    }
    g <- x$rf
    old.xpd <- par("xpd")
    old.las <- par("las")
    par(las = 1)
    dots <- list(...)
    cols <- color
    if(is.null(dots$bigplot))
        dots$bigplot <- c(0.05, 0.85, 0.15, 0.9)
    if(is.null(dots$smallplot))
        dots$smallplot <- c(0.92, 0.94, 0.15, 0.9)
    if (what == "lod" && !onlylod) {
        g[lower.tri(g)] <- t(g)[lower.tri(g)]
        diag(g) <- lmax
        g[!is.na(g) & g > lmax] <- lmax
        lseq <- seq(0, lmax, length.out = 256)
        lmin <- min(g, na.rm = TRUE)
        cols <- cols[lmin - lseq < 0]
        iargs <- list(x = 1:nrow(g), y = 1:ncol(g), z = t(g), ylab = "Markers",
                      xlab = "Markers", col = cols, legend.args = list(side = 4,
                                          text = "LOD", las = 0, line = 2))
        do.call("image.plot", c(iargs, dots))
    }
    else if (what == "rf") {
        g[upper.tri(g)] <- t(g)[upper.tri(g)]
        diag(g) <- rmin
        g[!is.na(g) & g < rmin] <- rmin
        maxg <- max(g, na.rm = TRUE)
        rseq <- seq(rmin, 0.5, length.out = 256)
        cols <- rev(cols)[maxg - rseq > 0]
        clen <- 256*(maxg/0.5 - 1)
        clen <- ifelse(clen < 0, 0, clen)
        cols <- c(cols, colorRampPalette(c(cols[length(cols)], "white"))(clen))
        iargs <- list(x = 1:nrow(g), y = 1:ncol(g), z = t(g), ylab = "Markers",
                      xlab = "", col = cols, legend.args = list(side = 4,
                      text = "Recombination Fractions", las = 0, line = 2, crt = 180))
        do.call("image.plot", c(iargs, dots))
    }
    else {
        dots$bigplot[1] <- 0.15
        diag(g) <- lmax
        g[!is.na(g) & g > lmax] <- lmax
        glt <- g[lower.tri(g)]
        g[lower.tri(g)] <- NA
        lseq <- seq(0, lmax, length.out = 256)
        lmin <- min(g, na.rm = TRUE)
        coll <- cols[lmin - lseq < 0]
        iargs <- list(x = 1:nrow(g), y = 1:ncol(g), z = t(g), ylab = "",
                      xlab = "", col = coll, legend.args = list(side = 4,
                                                    text = "Linkage", las = 0, line = 2))
        do.call("image.plot", c(iargs, dots))
        g[lower.tri(g)] <- glt
        g[upper.tri(g)] <- NA
        diag(g) <- NA
        g[!is.na(g) & g < rmin] <- rmin
        dots$smallplot[1:2] <- c(0.05, 0.07)
        maxg <- max(g, na.rm = TRUE)
        rseq <- seq(rmin, 0.5, length.out = 256)
        colr <- rev(cols)[maxg - rseq > 0]
        clen <- 256*(maxg/0.5 - 1)
        clen <- ifelse(clen < 0, 0, clen)
        colr <- c(colr, colorRampPalette(c(colr[length(colr)], "white"))(clen))
        iargs <- list(x = 1:nrow(g), y = 1:ncol(g), z = t(g), ylab = "",
                      xlab = "Markers", col = colr, add = TRUE, legend.args = list(side = 2,
                      text = "Recombination", las = 0, line = 1.5))
        do.call("image.plot", c(iargs, dots))
 }
    par(plt = dots$bigplot)
    if (markDiagonal) {
        for (i in 1:ncol(g)) segments(i + c(-0.5, -0.5, -0.5,
            +0.5), i + c(-0.5, +0.5, -0.5, -0.5), i + c(-0.5,
            +0.5, +0.5, +0.5), i + c(+0.5, +0.5, -0.5, +0.5))
    }
    n.mar <- nmar(x)
    n.chr <- nchr(x)
    a <- c(0.5, cumsum(n.mar) + 0.5)
    abline(v = a, xpd = TRUE, col = "white", lwd = 0)
    abline(h = a, xpd = FALSE, col = "white", lwd = 0)
    a <- par("usr")
    wh <- cumsum(c(0.5, n.mar))
    chrnam <- names(x$geno)
    chrpos <- (wh[-1] + wh[-length(wh)])/2
    par(plt = dots$bigplot)
    c.args <- c(list(side = 3, at = chrpos, labels = chrnam,
                     tick = FALSE, line = -0.6), dots$axis.args)
    do.call("axis", c.args)
    c.args$side <- 4
    do.call("axis", c.args)
    par(opar)
    if ("main" %in% names(dots))
        title(main = dots$main, line = 2.5)
    else {
        if (what == "lod")
            title(main = "Pairwise LOD scores", line = 2.5)
        else if (what == "rf")
            title(main = "Recombination fractions", line = 2.5)
        else title("Pairwise recombination fractions and LOD scores", line = 2.5)
    }
    invisible()
}

quickEst <- function(object, chr, map.function = "kosambi", ...){
    if (!any(class(object) == "cross"))
        stop("Input should have class \"cross\".")
    if (missing(chr))
        chr <- names(nmar(object))
    imf <- switch(map.function, kosambi = imf.k, haldane = imf.h,
                  morgan = imf.m, cf = imf.cf)
    nm <- nmar(object)
    for(i in chr){
        temp <- subset(object, chr = i)
        if(nmar(temp) != 1){
            est <- est.rf(temp)$rf
            nc <- dim(est)[1]
            er <- est[cbind(2:nc,1:(nc - 1))]
            temp$geno[[i]]$map <- c(0,cumsum(imf(er)))
            names(temp$geno[[i]]$map) <- dimnames(temp$geno[[i]]$data)[[2]]
            tempa <- argmax.geno(temp, step = 0, map.function = map.function, ...)
            tempa$geno[[i]]$data <- tempa$geno[[i]]$argmax
            tempa$geno[[i]] <- tempa$geno[[i]][-3]
            esta <- est.rf(tempa)$rf
            era <- esta[cbind(2:nc,1:(nc - 1))]
            if(class(object)[1] == "riself")
                era <- (era/2)/(1 - era)
            object$geno[[i]]$map <- c(0,cumsum(imf(era)))
            names(object$geno[[i]]$map) <- dimnames(object$geno[[i]]$data)[[2]]
            }
    }
    object
}

genClones <- function(object, chr, tol = 0.9, id = "Genotype"){
    pairsfun <- function(mat1 = mat1, mat2 = mat2){
        ng <- c(unique(mat1),unique(mat2))
        ng2 <- ng[!is.na(ng)]^2
        mat1[is.na(mat1)] <- mat2[is.na(mat2)] <- pi
        apply(mat1*mat2, 1, function(el, ng2) {
             is.wholenumber <- function(x, tol = .Machine$double.eps^0.5)  abs(x - round(x)) < tol
             ma <- sum(rep(1, length(el))[el %in% ng2])
             nm <- sum(rep(1, length(el))[!(el %in% ng2) & is.wholenumber(el)])
             na <- sum(rep(1, length(el))[el == (pi^2)])
             c(ma, nm, na)
       }, ng2 = ng2)
    }
    if(!inherits(object, "cross"))
        stop(deparse(substitute(object)), " must be of class \"cross\"")
    if(!missing(chr))
        object <- subset(object, chr)
    if(!(id %in% names(object$pheno)))
         stop("The unique identifier for the genotypes, ", deparse(substitute(id)),
              ", cannot be found in the object")
    gmat <- pull.geno(object)
    gnam <- as.character(object$pheno[[id]])
    nm <- nmar(object)
    cgm <- cg <- comparegeno(object)
    cg[upper.tri(cg, diag = TRUE)] <- NA
    wh <- which(cg > tol, arr.ind = TRUE)
    if(dim(wh)[1] == 0){
        message("There are no genotype pairs with matching allele proportions greater than ", tol,".")
        return(list(cgm = cgm))
    }
    ind1 <- wh[,1]; ind2 <- wh[,2]
    cgd <- cbind.data.frame(G1 = gnam[ind1], G2 = gnam[ind2])
    cgd$coef <- round(cg[wh], 4)
    cgd <- cbind.data.frame(cgd, t(pairsfun(gmat[ind1,, drop = FALSE],gmat[ind2,, drop = FALSE])))
    names(cgd)[4:6] <- c("match", "diff","na.both")
    cgd$na.one <- ncol(gmat) - apply(cgd[,4:6], 1, sum)
    group <- rep(1, nrow(cgd))
    ## organize groups
    if(nrow(cgd) > 1){
        for(el in 2:nrow(cgd)){
            ind <- rep(1:(el - 1), 2)
            if(any(wg <- as.character(unlist(cgd[1:(el - 1),1:2])) %in% as.character(unlist(cgd[el,1:2])))){
                wg <- ind[wg]
                if(length(ug <- unique(group[wg])) > 1){
                    mug <- min(ug)
                    oth <- ug[ug != mug]
                    group[group %in% oth] <- mug
                    ug <- mug
                }
                group[el] <- ug
            }
            else group[el] <- max(group) + 1
        }
    }
    cgd$group <- group
    cgd <- cgd[order(cgd$group),]
    rownames(cgd) <- NULL
    dimnames(cgm) <- list(gnam, gnam)
    list(cgm = cgm, cgd = cgd)
}

fixClones <- function(object, gc, id = "Genotype", consensus = TRUE){
    if(!inherits(object, "cross"))
        stop(deparse(substitute(object)), " must be of class \"cross\"")
    if(missing(gc))
        stop("Argument \"gc\" cannot be missing.")
    if(!is.data.frame(gc))
        stop("Argument \"gc\" needs to be a data frame.")
    if(!all(c("G1","G2","group") %in% names(gc)))
        stop("Argument \"gc\" must have names \"G1\", \"G2\" and \"group\", see ?fixClones.")
    if(!(id %in% names(object$pheno)))
         stop("The unique identifier for the genotypes, ", deparse(substitute(id)),
              ", cannot be found in the object")
    ph <- as.character(object$pheno[[id]])
    nm <- nmar(object)
    sl <- split(gc, gc$group)
    bm <- pull.geno(object)
    rownames(bm) <- ph
    nd <- unlist(pull.map(object))
    nc <- rep(names(nm), times = nm)
    cl <- sapply(object$geno, function(el) class(el))
    colnames(bm) <- paste(nc, markernames(object), nd, cl, sep = ";")
    gomit <- list()
    for(i in 1:length(sl)){
        gn <- unique(as.character(unlist(sl[[i]][,c("G1","G2")])))
        gn <- gn[mixedorder(gn)]
        if(!all(gn %in% ph))
            stop("Some genotypes in clone set cannot be found in cross object.")
        wh <- (1:length(ph))[ph %in% gn]
        if(consensus){
            td <- apply(bm[wh, ], 2, function(mm){
                mm <- mm[!is.na(mm)]
                if(length(mmu <- unique(mm)) > 1 | !length(mmu))
                    NA else mmu
            })
            kp <- rownames(bm) %in% gn[1]
            bm[kp,] <- td
            gomit[[i]] <- gn[2:length(gn)]
        }
        else {
            len <- apply(bm[wh,], 1, function(el) length(el[!is.na(el)]))
            kp <- gn[len == max(len)][1]
            gomit[[i]] <- gn[!(gn %in% kp)]
            kp <- rownames(bm) %in% kp
        }
        rownames(bm)[kp] <- paste(gn, collapse = "_")
    }
    gomit <- unlist(gomit)
    object$pheno[[id]] <- factor(rownames(bm))
    object$geno <- lapply(split.data.frame(t(bm), nc), function(el){
        temp <- list()
        spl.c <- strsplit(rownames(el), ";")
        temp$data <- as.matrix(t(el))
        temp$map <- as.numeric(sapply(spl.c, "[", 3))
        names(temp$map) <- dimnames(temp$data)[[2]] <- sapply(spl.c, "[", 2)
        class(temp) <- unique(sapply(spl.c, "[", 4))
        temp
    })
    object <- subset(object, ind = !(object$pheno[[id]] %in% gomit))
    object$geno <- object$geno[mixedorder(names(object$geno))]
    object
}

pp.init <- function(seg.thresh = 0.05, seg.ratio = NULL, miss.thresh = 0.1, max.rf = 0.25, min.lod = 3){
       if(!is.null(seg.thresh)){
           if(!(is.numeric(seg.thresh) | is.character(seg.thresh)))
               stop("seg.thresh argument of wrong type, see ?pullCross pr ?pushCross.")
           if(is.character(seg.thresh)){
               if(seg.thresh != "bonf")
                   stop("seg.thresh argument can only be numeric or equal to \"bonf\", see ?pullCross or ?pushCross")
           }
           if(is.numeric(seg.thresh)){
               if(seg.thresh >= 1 | seg.thresh < 0 )
                   stop("seg.thresh cannot exceed 1 and must be between 0 and 1")
           }
       }
       if(!is.null(seg.ratio)){
           seg.thresh <- NULL
           if(!is.character(seg.ratio))
               stop("seg.ratio argument of wrong type, see ?pullCross or ?pushCross.")
           if(!length(grep(":", seg.ratio)))
               stop("Alelle ratios must be split by \":\".")
       }
       if(!is.numeric(miss.thresh))
           stop("miss.thresh argument of wrong type, see ?pullCross or ?pushCross.")
       if(miss.thresh > 1 | miss.thresh < 0)
           stop("seg.thresh cannot exceed 1 and must be between 0 and 1")
       if(max.rf > 0.5)
           stop("Maximum recombination fraction cannot exceeed 0.5.")
       if(min.lod <= 0)
           stop("Maximum LOD score cannot be less than or equal to zero.")
       list(seg.thresh = seg.thresh, seg.ratio = seg.ratio, miss.thresh = miss.thresh, max.rf = max.rf, min.lod = min.lod)
   }

pullCross <- function(object, chr, type = c("co.located","seg.distortion","missing"), pars = NULL, replace = FALSE, ...){
    if(!is.null(object[[type]])){
        if(dim(object$pheno)[1] != dim(object[[type]]$data)[1])
            stop("Number of genotypes in linkage map does not match external ", type, " data.")
    }
    if(is.null(pars))
        pars <- pp.init()
    if(!is.list(pars))
        stop("argument pars must be a list object one or more named elements matching the results of pp.init()")
    pars <- do.call("pp.init", pars)
    type <- match.arg(type)
    if(!(class(object)[1] %in% c("bc","dh","riself","bcsft")))
        stop("Pulling of markers is not supported for this population type, see ?pullCross.")
    oldObject <- NULL
    if (!missing(chr)) {
        oldObject <- subset(object, paste("-", chr, sep =""))
        object <- subset(object, chr = chr)
    }
    nm <- nmar(object)
    chr <- names(nm)
    chrn <- rep(chr, times = nm)
    geno <- genot <- do.call("cbind", lapply(object$geno, function(el) el$data))
    rownames(genot) <- as.character(object$pheno[[1]])
    markn <- colnames(geno)
    whm <- FALSE
    if(type == "co.located"){
        dm <- findDupMarkers(object, chr, exact.only = FALSE)
        if(!is.null(dm)){
            cm <- unlist(dm)
            whm <- markn %in% cm
            km <- names(dm)
            markl <- chrl <- list()
            for(i in 1:length(dm)){
                markl[[i]] <- c(km[i], dm[[i]])
                chrl[[i]] <- chrn[markn %in% markl[[i]]]
            }
            lens <- sapply(dm, function(x) length(x) + 1)
            bins <- rep(1:length(lens), times = lens)
            tab <- cbind.data.frame(bins = bins, chr = unlist(chrl), mark = unlist(markl))
        }
    }
    if(type %in% c("seg.distortion","missing")){
        tab <- geno.table(object, scanone.output = TRUE)
        nc <- ncol(tab)
        if(class(object)[1] == "bcsft")
            nc <- nc - 2
        if(type == "seg.distortion"){
            if(!is.null(seg.thresh <- pars$seg.thresh)){
                pval <- 10^(-tab$neglog10P)
                if(is.character(seg.thresh)){
                    if(!(seg.thresh %in% "bonf"))
                        stop("Thresholding only exists for \"bonf\", see ?pull.cross")
                        seg.thresh <- 0.05/totmar(object)
                    }
                else if(seg.thresh > 1)
                    stop("Numerical threshold cannot exceed a p.value of 1.")
                whm <- pval < seg.thresh
            }
            else if(!is.null(seg.ratio <- pars$seg.ratio)) {
                ctab <- tab[,5:nc]
                sr <- as.numeric(unlist(strsplit(seg.ratio, ":")))
                if(length(sr) != ncol(ctab))
                    stop("Wrong number of ratio elements for cross type.")
                psr <- sr/sum(sr)
                props <- t(apply(ctab, 1, function(el) el/sum(el)))
                pmx <- apply(props, 1, max)
                pmn <- apply(props, 1, min)
                whm <- (pmx > max(psr)[1]) | (pmn < min(psr)[1])
            } else stop("Need a threshold or a ratio (see ?pullCross).")
        }
        if(type == "missing")
            whm <- tab$missing > pars$miss.thresh
        tab <- cbind.data.frame(mark = markn[whm], tab[whm,1:nc])
    }
    if(any(whm)){
        rownames(tab) <- NULL
        object <- drop.markers(object, markn[whm])
        if(is.null(object[[type]]) | replace)
            object[[type]]  <- list()
        object[[type]]$table <- rbind(object[[type]]$table, tab)
        object[[type]]$data <- cbind(object[[type]]$data, genot[,whm, drop = FALSE])
    } else message("No markers were found with these characteristics.")
    object$geno <- c(object$geno, oldObject$geno)
    object$geno <- object$geno[mixedorder(names(object$geno))]
    object
}

pushCross <- function(object, type = c("co.located","seg.distortion","missing","unlinked"), unlinked.chr = NULL, pars = NULL, ...){
    fixObject <- function(x, type){
        cc <- class(x)
        x <- unclass(x)
        x[[type]] <- NULL
        x <- x[!sapply(x, is.null)]
        class(x) <- cc
        x }
    if(type != "unlinked"){
       if(dim(object$pheno)[1] != dim(object[[type]]$data)[1])
           stop("Number of genotypes in linkage map does not match external ", type, " data.")
    }
    cs <- attr(object, "scheme")
    if(is.null(pars))
         pars <- pp.init()
    if(!is.list(pars))
        stop("Argument pars must be a list object with one or more named elements matching the results of pp.init()")
    pars <- do.call("pp.init", pars)
    type <- match.arg(type)
    if(!(class(object)[1] %in% c("bc","dh","riself","bcsft")))
        stop("Pushing of markers is not supported for this population type, see ?pushCross.")
    if(is.null(object[[type]]) & !(type %in% "unlinked"))
        stop("There are no markers of this type to push back.")
    if(type == "co.located"){
        odat <- object$co.located$data
        mtab <- object$co.located$table
        mnam <- markernames(object)
        bm <- split(mtab, mtab$bins)
        om <- sapply(bm, function(el) as.character(el$mark[1]))
        if(!all(mwh <- om %in% mnam)){
            warning("Some co-located marker anchors do not exist in map .. using matching set only.")
            bm <- bm[mwh]
            om <- om[mwh]
        }
        chrn <- rep(names(nmar(object)), times = nmar(object))
        nb <- sapply(bm, nrow)
        chrn <- chrn[pmatch(om, mnam)]
        uc <- unique(chrn)
        for(i in uc){
            bmc <- bm[chrn %in% i]
            markc <- as.character(unlist(sapply(bmc, function(el) el$mark[2:length(el$mark)])))
            omap <- object$geno[[i]]$map
            for (j in 1:length(bmc)){
                whm <- (1:length(omap))[names(omap) == bmc[[j]]$mark[1]]
                nmap <- c(omap[1:whm], rep(omap[whm], length(bmc[[j]]$mark) -
                                           1))
                if (length(omap) != whm)
                    nmap <- c(nmap, omap[(whm + 1):length(omap)])
                names(nmap)[(whm + 1):(whm + length(bmc[[j]]$mark) -
                                       1)] <- as.character(bmc[[j]]$mark)[-1]
                omap <- nmap
            }
            whc <- dimnames(odat)[[2]] %in% markc
            object$geno[[i]]$data <- cbind(object$geno[[i]]$data,
                                             odat[, whc, drop = FALSE])
            object$geno[[i]]$data <- object$geno[[i]]$data[, names(nmap)]
            object$geno[[i]]$map <- omap
        }
        object <- fixObject(object, type)
        attr(object, "scheme") <- cs
        return(object)
    }
    if(type %in% c("seg.distortion","missing")){
        push.object <- oe <- object
        push.object$geno <- list()
        whm <- rep(TRUE, ncol(object[[type]]$data))
        if(type == "seg.distortion"){
            tabs <- object$seg.distortion$table
            if(!is.null(seg.thresh <- pars$seg.thresh)){
                pval <- 10^(-tabs$neglog10P)
                if(length(seg.thresh) == 1)
                    whm <- pval > seg.thresh
                else if(length(seg.thresh) == 2)
                  whm <- (pval > min(seg.thresh)) & (pval < max(seg.thresh))
                else stop("A numerical seg.thresh should contain no more than two elements.")
            }
            else if(!is.null(seg.ratio <- pars$seg.ratio)) {
                sr <- as.numeric(unlist(strsplit(seg.ratio, ":")))
                ptab <- tabs[,6:ncol(tabs)]
                if(length(sr) != ncol(ptab))
                    stop("Wrong number of ratio elements for cross type.")
                psr <- sr/sum(sr)
                ptab <- t(apply(ptab, 1, function(el) el/sum(el)))
                pmx <- apply(ptab, 1, max)
                pmn <- apply(ptab, 1, min)
                whm <- pmx < max(psr)[1] | pmn > min(psr)[1]
            } else stop("Need a threshold or ratio (see ?pushCross).")
        }
        if(type %in% "missing"){
            tabs <- object$missing$table
            whm <- tabs$missing < pars$miss.thresh
        }
        if(any(whm)){
            inds <- (1:ncol(object[[type]]$data))[whm]
            push.object$geno[[type]]$data <- object[[type]]$data[,whm, drop = FALSE]
            push.object$geno[[type]]$map <- 1:ncol(push.object$geno[[type]]$data)
            names(push.object$geno[[type]]$map) <- dimnames(push.object$geno[[type]]$data)[[2]]
            class(push.object$geno[[type]]) <- class(object$geno[[1]])
        } else stop("There are no markers to push back with these characteristics")
        object[[type]]$data <- object[[type]]$data[,!whm, drop = FALSE]
        object[[type]]$table <- object[[type]]$table[!whm,]
        if(dim(object[[type]]$data)[2] == 0)
            object <- fixObject(object, type)
        object$geno <- c(object$geno, push.object$geno)

    }
    if(type %in% "unlinked"){
        if(is.null(unlinked.chr))
            stop("Argument unlinked.chr cannot be NULL.")
        if(!all(unlinked.chr %in% names(nmar(object))))
            stop("Some names in unlinked.chr do not match linkage group names of object.")
        push.object <- subset(object, chr = unlinked.chr)
        oe <- subset(object, paste("-", unlinked.chr, sep =""))
    }
    oe$geno <- lapply(oe$geno, function(el){
        hm <- floor(el$map[length(el$map)]/10)
        if(hm != 0){
            whp <- seq(el$map[1], el$map[length(el$map)], length.out = 2 + hm)
            whp <- whp[2:(length(whp) - 1)]
            pm <- c()
            for(i in 1:length(whp)){
                dm <- abs(el$map - whp[i])
                pm[i] <- (1:length(el$map))[dm == min(dm)][1]
            }
        } else pm <- NULL
        whp <- unique(c(1,pm,length(el$map)))
        el$data <- el$data[,whp, drop = FALSE]
        el$map <- el$map[whp]
        el })
    nme <- totmar(oe)
    mn <- markernames(push.object)
    chrn <- rep(names(nmar(oe)), times = nmar(oe))
    oe$geno <- c(oe$geno, push.object$geno)
    chru <- paste("UL", 1:length(mn), sep = "")
    chro <- c(chrn, chru)
    erf <- est.rf(oe)$rf
    lod <- erf
    lod[lower.tri(erf)] <- t(erf)[lower.tri(erf)]
    erf[upper.tri(erf)] <- t(erf)[upper.tri(erf)]
    diag(erf) <- 1; diag(lod) <- 0;
    tme <- totmar(oe)
    ind <- (nme + 1):tme
    for(i in (nme + 1):tme){
        if(!(chro[i] %in% unique(chrn))){
            wh <- (erf[,i] <= pars$max.rf) & (lod[,i] > pars$min.lod)
            link <- chro %in% chrn
            whl <- wh[link]; whr <- wh[!link]
            if(any(whl) | any(whr)){
                if(any(whl)){
                    chrt <- chro[link][whl]
                    erfs <- erf[,i][link][whl]
                }
                else if(any(whr)) {
                    chrt <- chro[!link][whr]
                    erfs <- erf[,i][!link][whr]
                }
                chi <- chrt[erfs == min(erfs)][1]
                chro[!link][whr] <- chro[chro == chro[i]] <- chi
            }
        }
    }
    for(i in 1:length(mn))
        object <- movemarker(object, mn[i], chro[nme + i])
    nm <- nmar(object)
    lenu <- grep("UL",names(nm))
    names(object$geno)[lenu] <- paste("UL",1:length(lenu),sep= "")
    object$geno <- object$geno[mixedorder(names(object$geno))]
    attr(object, "scheme") <- cs
    object

}

combineMap <- function(..., id = "Genotype", keep.all = TRUE, merge.by = "genotype"){
    mapl <- list(...)
    if(merge.by %in% "genotype"){
        pkeep.all <- keep.all
        marku <- unlist(lapply(mapl, function(el) markernames(el)))
        if(any(table(marku) > 1))
            stop("Non-unique markers between linkage maps.")
    } else {
        pkeep.all <- TRUE
        genu <- unlist(lapply(mapl, function(el) as.character(el$pheno[[id]])))
        if(any(table(genu) > 1))
            stop("Non-unique genotypes between linkage maps.")
    }
    if(length(unique(sapply(mapl, function(el) class(el)[1]))) > 1)
        stop("Classes of maps need to be identical.")
    scheme <- lapply(mapl, function(el) attr(el, "scheme"))
    if(any(!sapply(scheme, is.null))){
        sc <- do.call("rbind", scheme)
        if((nrow(sc) != length(mapl)) | !all(duplicated(sc)[2:nrow(sc)]))
            stop("Mismatched cross schemes in linkage maps")
    }
    if(!all(sapply(mapl, function(el) id %in% names(el$pheno))))
        stop("Some linkage maps do not contain column\"", id, "\".")
    mapl <- lapply(mapl, function(el){
        names(el$geno) <- gsub("x","X", names(el$geno))
        el})
    maplb <- lapply(mapl, function(el, merge.by){
        mapb <- do.call("cbind", lapply(el$geno, function(x) x$data))
        mdist <- unlist(pull.map(el))
        chrs <- rep(names(el$geno), times = nmar(el))
        cl <- sapply(el$geno, function(el) class(el))
        dimnames(mapb)[[2]] <- paste(chrs, markernames(el), as.character(mdist), cl, sep = ";")
        dimnames(mapb)[[1]] <- as.character(el$pheno[[id]])
        if(merge.by %in% "marker"){
            mapb <- as.data.frame(t(mapb))
            mapb[[merge.by]] <- markernames(el)
            mapb[["dims"]] <- dimnames(mapb)[[1]]
        } else {
            mapb <- as.data.frame(mapb)
            mapb[[merge.by]] <- as.character(el$pheno[[id]])
        }
        mapb
    }, merge.by)
    phelb <- lapply(mapl, function(el) el$pheno)
    mapm <- maplb[[1]]
    phem <- phelb[[1]]
    for(i in 1:(length(maplb) - 1)) {
        mapm <- merge(mapm, maplb[[i + 1]], by = merge.by, all = keep.all)
        phem <- merge(phem, phelb[[i + 1]], by = id, all = pkeep.all)
    }
    if(length(wh <- grep("dims", names(mapm)))){
        dnam <- apply(mapm[,wh], 1, function(el){
            el <- el[!is.na(el)]
            el[1] })
        omit <- c(names(mapm)[wh], "marker")
        mapm <- mapm[,!(names(mapm) %in% omit)]
        rownames(mapm) <- dnam
    } else {
        rownames(mapm) <- mapm[["genotype"]]
        mapm <- t(mapm[,!(names(mapm) %in% "genotype")])
    }
    nams <- dimnames(mapm)[[2]]
    mxo <- mixedorder(nams)
    mapm <- mapm[,mxo]
    phem <- phem[mixedorder(as.character(phem[[id]])),,drop = FALSE]
    spl.m <- strsplit(rownames(mapm), ";")
    ch <- sapply(spl.m, "[", 1)
    mapf <- list()
    mapf$geno <- lapply(split.data.frame(mapm, ch), function(el, nams){
        temp <- list()
        spl.c <- strsplit(rownames(el), ";")
        temp$data <- as.matrix(t(el))
        rownames(temp$data) <- nams
        temp$map <- as.numeric(sapply(spl.c, "[", 3))
        names(temp$map) <- dimnames(temp$data)[[2]] <- sapply(spl.c, "[", 2)
        mo <- order(temp$map)
        temp$map <- temp$map[mo]
        temp$data <- temp$data[,mo, drop = FALSE]
        class(temp) <- unique(sapply(spl.c, "[", 4))
        temp
    }, nams[mxo])
    class(mapf) <- class(mapl[[1]])
    attr(mapf, "scheme") <- scheme[[1]]
    mapf$pheno <- phem
    mapf$geno <- mapf$geno[mixedorder(names(mapf$geno))]
    mapf
}


statMark <- function(cross, chr, stat.type = c("marker","interval"), map.function = "kosambi"){
    if (!any(class(cross) == "cross"))
        stop("Input should have class \"cross\".")
    if(!(class(cross)[1] %in% c("bc","dh","riself","bcsft")))
        stop("This function is not suitable for this population type, see ?statMark.")
    if(any(!(stat.type %in% c("marker","interval"))))
        stop("Value for stat.type argument does not match allowable names, see ?statMak.")
    if (!missing(chr))
        cross <- subset(cross, chr = chr)
    nm <- nmar(cross)
    mrk <- list()
    if("marker" %in% stat.type) {
        mrk$marker <- geno.table(cross, scanone.output = TRUE)
        mrk$marker$dxo <- unlist(lapply(cross$geno, function(el) {
            if(ncol(el$data) < 3) sxo <- rep(0, ncol(el$data))
            else {
                sxo <- sapply(3:ncol(el$data), function(i, el) {
                    out <- el$data[,i-2] == el$data[,i]
                    left <- el$data[,i-2] != el$data[,i-1]
                    sm <- out + left
                    sm[sm != 2] <- 0
                    sm[sm == 2] <- 1
                    sum(sm, na.rm = TRUE)
                }, el)
                c(0, sxo, 0)
            }}))
    }
    if("interval" %in% stat.type){
        ic <- sapply(cross$geno, function(el) length(el$map) > 1)
        icross <- subset(cross, chr = names(nmar(cross))[ic])
        nmo <- nmar(icross)
        rf <- lod <- c()
        for(i in 1:length(nmo)){
            sc <- subset(icross, chr = names(nmo)[i])
            erf <- est.rf(sc)$rf
            snm <- nmo[i]
            inds <- cbind(1:(snm - 1), 2:snm)
            rf <- c(rf, erf[inds[,2:1, drop = FALSE]])
            lod <- c(lod, erf[inds])
        }
        mrk$interval <- cbind.data.frame(erf = rf, lod = lod)
        mrk$interval$dist <-  unlist(lapply(icross$geno, function(el) diff(el$map)))
        mf <- switch(map.function, kosambi = mf.k, haldane = mf.h,
                                   morgan = mf.m, cf = mf.cf)
        mrk$interval$mrf <- mf(mrk$interval$dist)
        mrk$interval$recomb <- unlist(lapply(icross$geno, function(el){
            sapply(2:ncol(el$data), function(i, el)
                  sum(abs(el$data[,i] - el$data[,i - 1]) > 0, na.rm = TRUE), el)
        }))
        rownames(mrk$interval) <- unlist(lapply(icross$geno, function(el){
                  len <- length(el$map)
                  paste("(",names(el$map)[1:(len - 1)],",", names(el$map)[2:len],")", sep = "")
              }))
        chr <- rep(names(nmo), times = nmo - 1)
        pos <- unlist(lapply(icross$geno, function(el) el$map[1:(length(el$map)-1)] + diff(el$map)/2), use.names = FALSE)
        mrk$interval <- cbind.data.frame(chr = chr, pos = pos, mrk$interval)
        mrk$interval$chr <- as.character(mrk$interval$chr)
        if(any(nm == 1)){
            sc1 <- names(nm)[nm == 1]
            mark1 <- markernames(subset(cross, chr = sc1))
            for(i in 1:length(sc1)) {
                mrk$interval[nrow(mrk$interval) + 1,1] <- sc1[i]
                mrk$interval$pos[nrow(mrk$interval)] <- 0
                rownames(mrk$interval)[nrow(mrk$interval)] <- paste("(",mark1[i],")", sep = "")
            }
            mrk$interval <- mrk$interval[mixedorder(mrk$interval$chr),]
        }
    }
    mrk
}

profileMark <- function(cross, chr, stat.type = "marker", use.dist = TRUE, map.function = "kosambi",
                        crit.val = NULL, display.markers = FALSE, mark.line = FALSE, ...){
    if (!any(class(cross) == "cross"))
        stop("Input should have class \"cross\".")
    if(!(class(cross)[1] %in% c("bc","dh","riself","bcsft")))
        stop("This function is not suitable for this population type, see ?profileMark.")
    if (!missing(chr))
        cross <- subset(cross, chr)
    cross$geno <- cross$geno[mixedorder(names(nmar(cross)))]
    stypes <- c("seg.dist","miss","prop","dxo","erf","lod","dist","mrf","recomb")
    mtypes <- c("marker","interval")
    if(any(!(stat.type %in% c(mtypes, stypes))))
        stop("Value for stat.type argument does not match allowable names, see ?profileMark.")
    rmtypes <- rep(mtypes, times = c(4,5))
    if(!any(stypes %in% stat.type)){
        call.type <- mtypes[mtypes %in% stat.type]
        stat.type <- stypes[rmtypes %in% call.type]
    }
    else call.type <- unique(rmtypes[stypes %in% stat.type])
    if(!is.null(crit.val)){
        if(crit.val != "bonf")
            stop("Argument crit.val can only be \"bonf\".")
    }
    stat.type <- stypes %in% stat.type
    stat <- stato <- statMark(cross, names(nmar(cross)), call.type, map.function)
    nm <- nmar(cross)
    if(use.dist) {
        dist <- lapply(cross$geno, function(el) {
            dist <- diff(el$map)/100
            tel <- c(0.05, dist)
            names(tel)[1] <- names(el$map)[1]
            tel})
        dist <- cumsum(unlist(dist))
    }
    else dist <- 1:sum(nm)
    adist <- dist
    mn <- markernames(cross)
    chrn <- factor(rep(names(nm), times = nm), levels = names(nm))
    plis <- list
    if("marker" %in% names(stat)) {
        nlp <- stat$marker$neglog10P
        mtype <- stat.type[1:4]
        nc <- ncol(stat$marker)
        mtype <- c(mtype[1:2],rep(mtype[3],nc - 5), mtype[4])
        props <- paste("Prop. ",names(summary(cross)$typing.freq), sep = "")
        mnam <- c("Seg. Distortion","Missing",props,"Double Crossovers")[mtype]
        mnam <- paste("Marker: ", mnam, sep = "")
        stat$marker <- cbind.data.frame(val = unlist(stat$marker[,(3:nc)[mtype]]))
        stat$marker$dist <- rep(dist, length(mnam))
        stat$marker$nams <- rep(mnam, each = length(dist))
        stat$marker$lg <- rep(chrn, length(mnam))
        if(!is.null(crit.val)){
            crit.val <- 0.05/totmar(cross)
            critm <- mn
            logmc <- 10^(-nlp) > crit.val
            critm[logmc] <- ""
            stato$marker$crit.val <- logmc
            stat$marker$mark <- rep(critm, length(mnam))
        }
    }
    if("interval" %in% names(stat)){
        ni <- nm - 1
        ni[ni == 0] <- 1
        itype <- stat.type[5:9]
        inam <- c("Est. Recomb. Frac.", "LOD", "Map Dist.", "Map Recomb. Frac.","# Recombinations")[itype]
        inam <- paste("Interval: ", inam, sep = "")
        intn <- rownames(stat$interval)
        lod <- stat$interval$lod
        stat$interval <- cbind.data.frame(val = unlist(stat$interval[,(3:7)[itype]]))
        idist <- unlist(lapply(split(dist, chrn), function(el){
            if(length(el) == 1) el
            else el[1:(length(el)-1)] + diff(el)/2
        }))
        stat$interval$nams <- rep(inam, each = length(idist))
        stat$interval$dist <- rep(idist, length(inam))
        stat$interval$lg <- rep(rep(names(nm), times = ni), length(inam))
        if(!is.null(crit.val)){
            crit.val <- -log10(0.05/(sum(nm - 1)))
            criti <- intn
            logic <- lod > crit.val
            criti[logic] <- ""
            stato$interval$crit.val <- logic
            stat$interval$mark <- rep(criti, length(inam))
        }
    }
    stat <- do.call("rbind.data.frame", stat)
    rownames(stat) <- NULL
    if(!display.markers){
        labs <- rep("",length(adist))
        wh <- c(1, cumsum(nm)[1:(length(nm) - 1)] + 1)
        labs[wh] <- paste(names(nm), "1", sep = ".")
    } else labs <- mn
    print(xyplot(val ~ dist | nams, data = stat, groups = stat$lg,
                 panel = function(x, y, groups = groups, subscripts = subscripts, crit.mark, nams, adist, mark.line, ...) {
                     if(mark.line)
                         panel.abline(v = adist, lty = 2, col = gray(0.8))
                     if(length(grep("Prop.", unique(nams[subscripts]))))
                         panel.abline(h = 0.5, lty = 2, col = gray(0.5))
                     if(!is.null(crit.mark)){
                         panel.text(x, y, labels = crit.mark[subscripts], ...)
                     }
                     panel.superpose(x, y, groups = groups, subscripts = subscripts, ...)
                 }, ylab = "", scales = list(y = list(relation = "free"),
                  x = list(labels = labs, rot = 45, at = adist, cex = 0.6)), xlab = "",
                 mark.line = mark.line, crit.mark = stat$mark, nams = stat$nams, adist = adist, ...))
    invisible(stato)
}

statGen <- function(cross, chr, bychr = TRUE, stat.type = c("xo","dxo","miss"), id = "Genotype"){
    if (!any(class(cross) == "cross"))
        stop("Input should have class \"cross\".")
    if(!(class(cross)[1] %in% c("bc","dh","riself","bcsft")))
        stop("This function not suitable for this population type, ?see statGen.")
    if(!(id %in% names(cross$pheno)))
        stop("The unique identifier for the genotypes, ", deparse(substitute(id)),
             ", cannot be found in the object")
    if(any(!(stat.type %in% c("xo","dxo","miss"))))
        stop("Value for stat.type argument does not match allowable names, see ?statGen.")
    if (!missing(chr))
        cross <- subset(cross, chr = chr)
    nch <- nchr(cross)
    nm <- nmar(cross)
    gnam <- as.character(cross$pheno[[id]])
    cnt <- list()
    if("xo" %in% stat.type) {
        cc <- sapply(cross$geno, function(el) length(el$map) > 1)
        ccross <- subset(cross, chr = names(nmar(cross))[cc])
        cnt$xo <- do.call("cbind", lapply(ccross$geno, function(el)
             apply(el$data, 1, function(rows) {
                 ad <- abs(diff(rows[!is.na(rows)]))
                 length(ad[ad != 0])
             })))
    }
    if("dxo" %in% stat.type){
        pc <- sapply(cross$geno, function(el) length(el$map) > 2)
        dcross <- subset(cross, chr = names(nmar(cross))[pc])
        cnt$dxo <- do.call("cbind", lapply(dcross$geno, function(el) {
            sxo <- sapply(3:ncol(el$data), function(i, el) {
                out <- el$data[,i-2] == el$data[,i]
                left <- el$data[,i-2] != el$data[,i-1]
                sm <- out + left
                sm[sm != 2] <- 0
                sm[sm == 2] <- 1
                sm
            }, el)
            apply(sxo, 1, sum, na.rm = TRUE)
        }))
    }
    if("miss" %in% stat.type)
        cnt$miss <- do.call("cbind", lapply(cross$geno, function(el)
            apply(el$data, 1, function(rows) {
                rows[is.na(rows)] <- 0
                length(rows[rows == 0])
            })))
    cnt <- lapply(cnt, function(el, gnam, bychr){
        if(!bychr) {
            el <- apply(el, 1, sum)
            names(el) <- gnam
        } else rownames(el) <- gnam
        el
    }, gnam, bychr)
    cnt
}

profileGen <- function(cross, chr, bychr = TRUE, stat.type = c("xo","dxo","miss"), id = "Genotype", xo.lambda = NULL, ...){
    if (!any(class(cross) == "cross"))
        stop("Input should have class \"cross\".")
    if(!(class(cross)[1] %in% c("bc","dh","riself","bcsft")))
        stop("This function not suitable for this population type, see ?profileGen.")
    if(!(id %in% names(cross$pheno)))
         stop("The unique identifier for the genotypes, ", deparse(substitute(id)),
              ", cannot be found in the object")
    if (!missing(chr))
        cross <- subset(cross, chr = chr)
     nm <- nmar(cross)
     cnt <- statGen(cross, names(nm), bychr, stat.type, id)
     pnam <- c("Crossovers","Double Crossovers","Missing")
     stat.type <- pnam[pmatch(names(cnt), c("xo","dxo","miss"))]
     ph <- as.character(cross$pheno[[id]])
     if(("xo" %in% names(cnt)) & !is.null(xo.lambda)) {
         if(bychr) cxo <- apply(cnt$xo, 1, sum) else cxo <- cnt$xo
         xo.lambda <- ppois(cxo, xo.lambda, lower.tail = FALSE) < 0.05/length(ph)
     }
     nch <- nchr(cross)
     inter <- floor(seq(1, length(ph), length.out = 20))
     labs <- ph[inter]
     dots <- list(...)
    if (!is.na(pmatch("cex", names(dots))))
        p.cex <- dots$cex else p.cex <- par("cex")
    if(bychr){
        no.splits <- nch*length(cnt)
        stat.type <- paste(rep(names(nm),length(cnt)), rep(stat.type, each = nch), sep = ": ")
    } else no.splits <- length(cnt)
     stat.type <- rep(stat.type, each = length(ph))
     phv <- rep(ph, no.splits)
     noind <- rep(1:length(ph), no.splits)
     cntl <- unlist(cnt)
     form <- cntl ~ noind | stat.type
     grp <- rep(1, length(noind))
     cntn <- cntl; noindn <- noind
     plot.xo <- FALSE
     if(!is.null(xo.lambda) & any(xo.lambda)){
        inds <- (1:length(phv))[rep(xo.lambda,no.splits)]
        grp[inds] <- 2
        cntn[-inds] <- noindn[-inds] <- phv[-inds] <- NA
        ylims <- lapply(split(cntl, stat.type), function(el) c(0, max(el)[1] + 0.15*max(el)[1]))
        plot.xo <- TRUE
    } else ylims <- lapply(split(cntl, stat.type), function(el) c(0, max(el)[1]))
    xo.panel <- function(x, y, subscripts = subscripts, cntn, noindn, phv, plot.xo, ...){
        panel.xyplot(x, y, ...)
        panel.segments(x, 0, x, y, ...)
        if(plot.xo)
            panel.text(noindn[subscripts], cntn[subscripts], labels = phv[subscripts], adj = c(-0.2,-0.2), srt = 45, ...)
    }
    print(xyplot(form, groups = factor(grp),
                 panel = panel.superpose, panel.groups = xo.panel,
                 cntn = cntn, noindn = noindn, phv = phv, plot.xo = plot.xo,
                 scales = list(x = list(labels = labs, rot = 45, at = inter, cex = p.cex),
                     y = list(relation = "free")), xlab = "Genotypes", ylab = "",ylim = ylims, ...))
    invisible(list(stat = cnt, xo.lambda = xo.lambda))
}

alignCross <- function(object, chr, maps, ...){
    if (class(object)[2] != "cross")
        stop("object should have class \"cross\".")
    if(missing(maps))
        stop("map argument cannot be missing.")
    call <- match.call()
    mp <- deparse(call$maps)
    if(!grep("list", mp))
        stop("maps argument must be a list of maps")
    mapn <- names(maps)
    if(any(mapn %in% "") | is.null(mapn)){
        warning("Some maps have not been named .. using map object name.")
        mp <- substring(mp, 6, nchar(mp) - 1)
        mp <- gsub(" ", "", mp)
        mp <- strsplit(mp, ",")[[1]]
        if(length(mp) > 1){
            gp <- grep("=", mp)
            if(length(gp))
                ind <- (1:length(mp))[-grep("=",mp)]
            else ind <- (1:length(mp))
        }
        else ind <- 1
        mapn[ind] <- mp[ind]
    }
    if(!missing(chr))
        object <- subset(object, chr = chr)
    maps <- lapply(maps, function(el){
            if(class(el)[2] %in% "cross"){
                mn <- markernames(el)
                ref.chr <- rep(names(nmar(el)), times = nmar(el))
                ref.dist <- unlist(pull.map(el))
                cbind.data.frame(marker = mn, ref.chr = ref.chr, ref.dist = ref.dist)
            } else if(class(el)[1] %in% "data.frame"){
                nms <- c("marker", "ref.chr", "ref.dist")
                if(!all(nms %in% names(el)))
                    stop("One of \"marker\", \"ref.chr\", \"ref.dist\" could not be found in data frame.")
                el[,nms]
            } else stop("All maps must inherit class \"cross\" or \"data.frame\".")
        })
    mo <- pull.map(object)
    nm <- nmar(object)
    ldat <- list()
    for(i in 1:length(mo)){
        mt <- mo[[i]]
        con <- lapply(maps, function(el, mt){
            pm <- match(names(mt), el$marker)
            md <- mt[!is.na(pm)]
            pm <- pm[!is.na(pm)]
            if(!length(pm)) NULL
            else {
                el <- el[pm,]
                el$map.dist <- md
                el
            }
        }, mt)
        names(con) <- paste("Ref: ", mapn, sep = "")
        con <- con[!sapply(con, is.null)]
        if(length(con)){
            nr <- sapply(con, nrow)
            ldat[[i]] <- do.call("rbind.data.frame", con)
            ldat[[i]]$map.chr <- names(nm)[i]
            ldat[[i]] <- cbind(map = rep(names(con), times = nr), ldat[[i]])
        }
    }
    fdat <- do.call("rbind.data.frame", ldat)
    if(dim(fdat)[1] == 0) 
       stop("There are no matching markers between the inputted map and the reference maps.")
    rownames(fdat) <- NULL
    fdat$map.chr <- factor(fdat$map.chr, levels = names(object$geno))
    print(xyplot(map.dist ~ ref.dist | map.chr*map, groups = fdat$ref.chr, data = fdat,
                 scales = list(relation = "free"),  xlab = "Reference distance", ylab = "Map distance",
                 panel = panel.superpose,
                 panel.groups = function(x, y, subscripts = subscripts, labs = as.character(fdat$ref.chr), ...)
                 panel.text(x, y, labels = labs[subscripts], ...), ...))
    invisible(fdat)
}

pValue <- function(dist = seq(25,40, by = 5), pop.size = 100:500, map.function = "kosambi", LOD = FALSE){
    colour_hue <- function(n) {
        hues = seq(15, 375, length = n + 1)
        hcl(h = hues, l = 65, c = 100)[1:n]
    }
    if(max(dist) > 100)
        stop("Genetic distance should not exceed 100cM.")
    if(min(dist) < 0.001)
        stop("Minimum genetic distance allowed is 0.001cM.")
    mf <- switch(map.function, kosambi = mf.k, haldane = mf.h,
                 morgan = mf.m, cf = mf.cf)
    rf <- mf(dist)
    val <- list()
    for(i in 1:length(rf)){
        rec <- rf[i]*pop.size
        if(LOD){
            val[[i]] <- (pop.size - rec)*log10(2*(1 - rf[i])) + rec*log10(2*rf[i])
            ylab <- list("LOD score of linkage", cex = 1.5)
        } else {
            val[[i]] <- -log10(exp(-2*((pop.size/2 - rec)^2)/pop.size))
            ylab <- list(expression(paste("-log10 ",epsilon, sep = "")), cex = 1.5)
        }
    }
    dat <- cbind.data.frame(val = unlist(val))
    dat$pop.size <- rep(pop.size, length(dist))
    dat$dist <- rep(dist, each = length(pop.size))
    cols <- colour_hue(length(dist))
    labs <- paste(dist, " cM", sepm = "")
    print(xyplot(val ~ pop.size, type = "l", data = dat, groups = dat$dist,
                 lwd = 2, col = cols, xlab = "Number of genotypes in population", ylab = ylab,
                 key = list(x = 0.05, y = 0.9, text = list(labs, cex = 2), lines = list(col = cols, lwd = 3))))
}

Try the ASMap package in your browser

Any scripts or data that you put into this service are public.

ASMap documentation built on Nov. 1, 2024, 9:08 a.m.