Nothing
#' Tukey HSD Test for Multiple Comparisons
#'
#' Performs Tukey's Honest Significant Difference (HSD) test for all pairwise
#' comparisons after fitting an ANOVA model. This post hoc method uses the
#' studentized range distribution and is appropriate when variances are equal
#' across groups and observations are independent.
#'
#' Tukey's test controls the family-wise error rate and is widely used when group
#' comparisons have not been planned in advance.
#'
#' Advantages:
#' - Strong control of Type I error rate.
#' - Ideal for balanced designs with equal variances.
#'
#' Disadvantages:
#' - Assumes equal variances and sample sizes.
#' - Less powerful with heteroscedasticity.
#'
#' @param modelo An object of class \code{aov} or \code{lm} representing an ANOVA model.
#' @param alpha Significance level (default is 0.05).
#'
#' @return An object of class \code{"tukey"} and \code{"comparaciones"}, containing:
#' \itemize{
#' \item \code{Resultados}: A data frame of pairwise comparisons with mean differences, critical value, p-value, and significance level.
#' \item \code{Promedios}: A named numeric vector of group means.
#' \item \code{Orden_Medias}: A character vector with group names ordered from highest to lowest mean.
#' \item \code{Metodo}: A character string indicating the method used ("Tukey").
#' }
#'
#' @references Tukey, J. W. (1949). "Comparing individual means in the analysis of variance." \emph{Biometrics}, 5(2), 99–114. <https://doi.org/10.2307/3001913>
#'
#' @examples
#' data(d_e, package = "Analitica")
#' mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
#' resultado <- TukeyTest(mod)
#' summary(resultado)
#' plot(resultado)
#'
#' @export
#' @importFrom stats qtukey ptukey deviance qf
#' @importFrom utils combn
TukeyTest <- function(modelo, alpha = 0.05) {
factor_name <- names(modelo$xlevels)[1]
grupos <- modelo$model[[factor_name]]
respuesta <- modelo$model[[1]]
medias <- tapply(respuesta, grupos, mean)
n <- tapply(respuesta, grupos, length)
nombres_grupos <- names(medias)
orden_medias <- order(medias, decreasing = TRUE)
etiquetas_ordenadas <- nombres_grupos[orden_medias]
df_error <- modelo$df.residual
MSerror <- deviance(modelo) / df_error
ng <- length(medias)
comparaciones <- combn(nombres_grupos, 2, simplify = FALSE)
resultados <- data.frame(
Comparacion = character(),
Diferencia = numeric(),
Valor_Critico = numeric(),
p_value = numeric(),
Significancia = character(),
stringsAsFactors = FALSE
)
for (par in comparaciones) {
g1 <- par[1]
g2 <- par[2]
dif <- abs(medias[g1] - medias[g2])
SE <- sqrt(MSerror * (1 / n[g1] + 1 / n[g2]))
q_crit <- qtukey(1 - alpha, ng, df_error)
valor_critico <- q_crit * SE / sqrt(2)
q_obs <- dif * sqrt(2) / SE
p_val <- 1 - ptukey(q_obs, ng, df_error)
sig <- ifelse(p_val < 0.001, "***",
ifelse(p_val < 0.01, "**",
ifelse(p_val < 0.05, "*", "ns")))
comparacion <- paste(sort(c(g1, g2)), collapse = " - ")
resultados <- rbind(resultados, data.frame(
Comparacion = comparacion,
Diferencia = round(dif, 4),
Valor_Critico = round(valor_critico, 4),
p_value = round(p_val, 4),
Significancia = sig
))
}
out <- list(
Resultados = resultados,
Promedios = medias,
Orden_Medias = etiquetas_ordenadas,
Metodo = "Tukey"
)
class(out) <- c("comparaciones", "tukey")
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.