bgbb.rf.matrix.PosteriorMeanTransactionRate: BG/BB Posterior Mean Transaction Rate using a...

Description Usage Arguments Details Value References See Also Examples

View source: R/bgbb.R

Description

Computes the mean value of the marginal posterior value of P, the Bernoulli transaction process parameter.

Usage

1

Arguments

params

BG/BB parameters - a vector with alpha, beta, gamma, and delta, in that order. Alpha and beta are unobserved parameters for the beta-Bernoulli transaction process. Gamma and delta are unobserved parameters for the beta-geometric dropout process.

rf.matrix

recency-frequency matrix. It must contain columns for frequency ("x"), recency ("t.x"), number of transaction opportunities in the calibration period ("n.cal"), and the number of customers with this combination of recency, frequency and transaction opportunities in the calibration period ("custs"). Note that recency must be the time between the start of the calibration period and the customer's last transaction, not the time between the customer's last transaction and the end of the calibration period.

Details

rf.matrix has columns x, t.x, and n.cal'.

Value

The posterior mean transaction rate.

References

Fader, Peter S., Bruce G.S. Hardie, and Jen Shang. "Customer-Base Analysis in a Discrete-Time Noncontractual Setting." Marketing Science 29(6), pp. 1086-1108. 2010. INFORMS. Web.

See Also

bgbb.PosteriorMeanTransactionRate

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
 
data(donationsSummary)

rf.matrix <- donationsSummary$rf.matrix
# donationsSummary$rf.matrix already has appropriate column names

# starting-point parameters
startingparams <- c(1, 1, 0.5, 3)
# estimated parameters
est.params <- bgbb.EstimateParameters(rf.matrix, startingparams)

# return the posterior mean transaction rate vector
bgbb.rf.matrix.PosteriorMeanTransactionRate(est.params, rf.matrix)

BTYD documentation built on Nov. 18, 2021, 1:10 a.m.