# R/contingency.R In BayesFactor: Computation of Bayes Factors for Common Designs

#### Documented in contingencyTableBF

```##' This function computes Bayes factors for contingency tables.
##'
##' The Bayes factor provided by \code{contingencyTableBF} tests the independence assumption in
##' contingency tables under various sampling plans, each of which is described below.
##' See Gunel and Dickey (1974) for more details.
##'
##' For \code{sampleType="poisson"}, the sampling plan is assumed to be
##' one in which observations occur as a poisson process with an overall
##' rate, and then assignment to particular factor levels occurs with
##' fixed probability. Under the null hypothesis, the assignments to the
##' two factors are independent. Importantly, the total N is not fixed.
##'
##' For \code{sampleType="jointMulti"} (joint multinomial), the sampling
##' plan is assumed to be one in which the total N is fixed, and observations
##' are assigned to cells with fixed probability. Under the null hypothesis, the
##' assignments to the two factors are independent.
##'
##' For \code{sampleType="indepMulti"} (independent multinomial), the
##' sampling plan is assumed to be one in which row or column totals are fixed,
##' and each row or column is assumed to be multinomially distributed.
##' Under the null hypothesis, each row or column is assumed to have the
##' same multinomial probabilities. The fixed margin must be given by
##' the \code{fixedMargin} argument.
##'
##' For \code{sampleType="hypergeom"} (hypergeometric), the sampling
##' plan is assumed to be one in which both the row and column totals are fixed.
##' Under the null hypothesis, the cell counts are assumed to be governed by the
##' hypergeometric distribution.
##'
##' For all models, the argument \code{priorConcentration} indexes
##' the expected deviation from the null hypothesis under the alternative,
##' and corresponds to Gunel and Dickey's (1974) "a" parameter.
##'
##' @title Function for Bayesian analysis of one- and two-sample designs
##' @param x an m by n matrix of counts (integers m,n > 1)
##' @param sampleType the sampling plan (see details)
##' @param fixedMargin for the independent multinomial sampling plan, which margin is fixed ("rows" or "cols")
##' @param priorConcentration prior concentration parameter, set to 1 by default (see details)
##' @param posterior if \code{TRUE}, return samples from the posterior instead
##'   of Bayes factor
##' @param callback callback function for third-party interfaces
##' @param ... further arguments to be passed to or from methods.
##' @return If \code{posterior} is \code{FALSE}, an object of class
##'   \code{BFBayesFactor} containing the computed model comparisons is
##'   returned.
##'
##'   If \code{posterior} is \code{TRUE}, an object of class \code{BFmcmc},
##'   containing MCMC samples from the posterior is returned.
##' @export
##' @keywords htest
##' @author Richard D. Morey (\email{richarddmorey@@gmail.com})
##' @author Tahira Jamil (\email{tahjamil@@gmail.com})
##' @references Gunel, E. and Dickey, J., (1974)
##' Bayes Factors for Independence in Contingency Tables. Biometrika, 61, 545-557
##'
##' @note Posterior sampling for the hypergeometric model under the alternative
##' has not yet been implemented.
##'
##' @examples
##' ## Hraba and Grant (1970) doll race data
##' data(raceDolls)
##'
##' ## Compute Bayes factor for independent binomial design, with
##' ## columns as the fixed margin
##' bf = contingencyTableBF(raceDolls, sampleType = "indepMulti", fixedMargin = "cols")
##' bf
##'
##' ## Posterior distribution of difference in probabilities, under alternative
##' chains = posterior(bf, iterations = 10000)
##' sameRaceGivenWhite = chains[,"pi[1,1]"] / chains[,"pi[*,1]"]
##' sameRaceGivenBlack = chains[,"pi[1,2]"] / chains[,"pi[*,2]"]
##' hist(sameRaceGivenWhite - sameRaceGivenBlack, xlab = "Probability increase",
##'   main = "Increase in probability of child picking\nsame race doll (white - black)",
##'   freq=FALSE, yaxt='n')
##' box()
##'

contingencyTableBF <- function(x, sampleType, fixedMargin = NULL, priorConcentration = 1, posterior = FALSE,  callback = function(...) as.integer(0), ...)
{

x.mat = as.matrix(as.integer(x))
dim(x.mat) = dim(x)
x = as.data.frame(x.mat)

if( sampleType == "indepMulti" )
if( is.null(fixedMargin) ){
stop("Argument fixedMargin ('rows' or 'cols') required with independent multinomial sampling plan.")
}else if( !(fixedMargin %in% c("rows","cols")) ){
stop("Argument fixedMargin must be either 'rows' or 'cols'.")
}

checkCallback(callback,as.integer(0))
numerator = switch(sampleType,
poisson = BFcontingencyTable(type = "poisson",
identifier = list(formula = "non-independence"),
prior=list(a=priorConcentration),
shortName = paste0("Non-indep. (a=",priorConcentration,")"),
longName = paste0("Alternative, non-independence, a = ", priorConcentration)),
jointMulti = BFcontingencyTable(type = "joint multinomial",
identifier = list(formula = "non-independence"),
prior=list(a=priorConcentration),
shortName = paste0("Non-indep. (a=",priorConcentration,")"),
longName = paste0("Alternative, non-independence, a = ", priorConcentration)),
indepMulti = BFcontingencyTable(type = "independent multinomial",
identifier = list(formula = "non-independence", fixedMargin = fixedMargin),
prior=list(a=priorConcentration, fixedMargin = fixedMargin),
shortName = paste0("Non-indep. (a=",priorConcentration,")"),
longName = paste0("Alternative, non-independence, a = ", priorConcentration)),
hypergeom = BFcontingencyTable(type = "hypergeometric",
identifier = list(formula = "non-independence"),
prior=list(a=priorConcentration),
shortName = paste0("Non-indep. (a=",priorConcentration,")"),
longName = paste0("Alternative, non-independence, a = ", priorConcentration)),
stop("Unknown value of sampleType (see help for contingencyTableBF).")
)

if(posterior){
chains = posterior(numerator, data = x, callback = callback, ...)
checkCallback(callback,as.integer(1000))
return(chains)
}else{
bf = compare(numerator = numerator, data = x)
checkCallback(callback,as.integer(1000))
return(bf)
}
}
```

## Try the BayesFactor package in your browser

Any scripts or data that you put into this service are public.

BayesFactor documentation built on July 5, 2022, 5:09 p.m.