Nothing
#' Estimate cell type proportions using first PC of expression matrix
#'
#' @param x A sample by gene bulk expression matrix. Genes should be marker
#' genes
#' @param weighted Boolean. If weighted=TRUE, multiply scaled gene expression by
#' gene weights
#' @param w Numeric vector. Weights of genes
#' @return ret List. Attribute \strong{pcs} contains matrix of PCs, where PC1
#' should be used as estimates for cell type abundances
#' Attribute \strong{sdev} contains eigenvalues of eigendecomposition of
#' var-covar matrix. The 1st eigenvalue should explain most of the variance.
#' Attribute \strong{genes} contains names of genes.
EstimatePCACellTypeProportions <- function(x, weighted=FALSE, w=NULL){
x <- base::scale(x)
if (weighted) {
# Intersect gene names of weights and column names of x
common.markers <- base::intersect( base::colnames(x), base::names(w) )
# not sure if this will ever happen, since we check this at line 268
#if ( length(common.markers) == 0 ) {
# base::stop(base::paste0("Genes from weights w do not match with column ",
# "names of expression matrix x."))
#}
x <- x[,common.markers,drop=F]
w <- w[common.markers,drop=F]
wd <- base::diag(w)
if (base::all.equal(base::dim(wd), c(0,0)) == TRUE){
wd <- w
}
xw <- x %*% wd
varcov <- t(xw) %*% xw
}
else {
varcov <- t(x) %*% x
}
varcov.ed <- base::eigen(varcov)
rot <- varcov.ed$vectors
wpcs <- x %*% rot
sds <- varcov.ed$values
# x contains PCs, sdev contains eigenvalues of eigendecomposition
return(list( pcs = wpcs, sdev = sds, genes=colnames(x)))
}
#' Get number of genes to use with weighted PCA
#'
#' @param x Numeric Matrix. A sample by gene expression matrix containing the
#' marker genes.
#' @param w Numeric Vector. The weights of the genes that correspond to the
#' columns of x.
#' @param min.gene Numeric. Minimum number of genes to consider as markers.
#' @param max.gene Numeric. Maximum number of genes to consider as markers.
#' @return best.n Numeric. Number of genes to use
GetNumGenesWeighted = function(x, w, min.gene = 25, max.gene = 200){
max.gene = base::min(max.gene, base::ncol(x))
if (max.gene == 1) return(1)
ratios = base::lapply(min.gene:max.gene,
function(i) {
ret = EstimatePCACellTypeProportions(x[,1:i,drop=FALSE],
weighted=TRUE,
w=w[1:i])
vars = ret$sdev
return(vars[1] / vars[2])
})
best.n = base::which.max(ratios) + min.gene - 1
return(best.n)
}
#' Get number of genes to use with no weighted information
#'
#' @param x Numeric Matrix. A sample by gene expression matrix containing the
#' marker genes.
#' @param min.gene Numeric. Minimum number of genes to consider as markers.
#' @param max.gene Numeric. Maximum number of genes to consider as markers.
#' @return best.n Numeric. Number of genes to use
GetNumGenes = function(x, min.gene = 25, max.gene = 200){
max.gene = base::min(max.gene, base::ncol(x))
if (max.gene == 1) return(1)
ratios = base::lapply(min.gene:max.gene,
function(i) {
ret = EstimatePCACellTypeProportions(x[,1:i])
vars = ret$sdev
return(vars[1] / vars[2])
})
best.n = base::which.max(ratios) + min.gene - 1
return(best.n)
}
#' Get unique markers present in only 1 cell type
#'
#' Given a data frame of marker genes for cell types,
#' returns a new data frame with non-unique markers removed.
#'
#' @param x Data frame. Contains column with marker gene names
#' @param gene_col Character string. Name of the column that contains
#' the marker genes
#' @return x Data frame. Markers with non-unique markers removed
#'
GetUniqueMarkers <- function(x, gene_col="gene"){
keep <- ! (duplicated(x[,gene_col], fromLast = FALSE) |
duplicated(x[,gene_col], fromLast = TRUE) )
return(x[keep,])
}
#' Correlate columns of data frame
#'
#' This function runs correlation between markers of a data frame or matrix,
#' returning the values of the lower/upper triangular of the correlation matrix
#' in a vector.
#'
#' @param x Data frame or matrix. Column vectors are correlated
#' @param method Character string. Name of method passed to cor.
#' Pearson by default.
#' @return cors Numeric vector. Correlation coefficients of pairs
#'
CorTri <- function(x, method="pearson"){
cors <- stats::cor(x, method=method)
cors <- cors[base::lower.tri(cors)]
return(cors)
}
#' Return cell type proportions from bulk
#'
#' Calculate cell type proportions from a data frame containing bulk expression
#' values. Uses PCA (weighted or regular) to estimate relative proportions
#' within each cell type.
#'
#' @param bulk Expression Set containing bulk data
#' @param cell_types Character vector. Names of cell types.
#' @param markers Data frame with columns specifying cluster and gene,
#' and optionally a column for weights, typically the fold-change of the gene.
#' Important that the genes for each cell type are row-sorted by signficance.
#' @param ct_col Character string. Column name specifying cluster/cell type
#' corresponding to each marker gene in \strong{markers}.
#' @param gene_col Character string. Column name specifying gene names in
#' \strong{markers}.
#' @param min_gene Numeric. Min number of genes to use for each cell type.
#' @param max_gene Numeric. Max number of genes to use for each cell type.
#' @param weighted Boolean. Whether to use weights for gene prioritization
#' @param w_col Character string. Column name for weights, such as "avg_logFC",
#' in \strong{markers}
#' @param verbose Boolean. Whether to print log info during decomposition.
#' Errors will be printed regardless.
#'
#' @return A List. Slot \strong{cors} contains list of vectors with correlation
#' coefficients. Slot \strong{ctps} contains list of CTP objects returned by
#' GetCTP
GetCTP <- function(bulk,
cell_types,
markers,
ct_col,
gene_col,
min_gene,
max_gene,
weighted,
w_col,
verbose){
ctp = base::lapply(cell_types, function(ct){
# Get marker genes
markers_ct = markers[ markers[,ct_col] == ct , , drop=FALSE]
ctm = base::make.unique(as.character(markers_ct[, gene_col]))
# Get markers in common between bulk and markers data frame
common_markers = base::intersect(ctm, Biobase::featureNames(bulk))
if ( base::length(common_markers) == 0 ){
base::stop("No marker genes found in bulk expression data")
}
expr = base::t(Biobase::exprs(bulk)[common_markers, , drop = FALSE])
if ( base::ncol(expr) < min_gene ){
base::stop(base::paste0(base::sprintf("For cell type %s, There are less marker genes in ", ct),
base::sprintf("the bulk expression set (%i) than the ", base::ncol(expr)),
base::sprintf("minimum number of genes set (%i) ", min_gene),
"for PCA-based decomposition\nSet the min_gene parameter to a lower integer."))
}
if (weighted){
# Get gene weights
ctw = markers_ct[, w_col]; names(ctw) = ctm; ctw = ctw[common_markers]
ng = GetNumGenesWeighted(expr, ctw, min_gene, max_gene) # Number of markers for PCA
expr = expr[, 1:ng, drop = FALSE]
if (verbose){
base::message(base::sprintf("Using %i genes for cell type %s; ", ng, ct))
}
ret = EstimatePCACellTypeProportions(expr, weighted = TRUE, w = ctw[1:ng])
}
else{
ng = GetNumGenes(expr, min_gene, max_gene)
expr = expr[, 1:ng, drop = FALSE]
if (verbose){
base::message(base::sprintf("Using %i genes for cell type %s; ", ng, ct))
}
ret = EstimatePCACellTypeProportions(expr)
}
# Flip the sign of the first PC if negatively correlated with most genes
cors = stats::cor(expr, ret$pcs[,1])
n_pos = sum(cors[,1] > 0)
if (n_pos/base::length(cors[,1]) < (0.5)) {
ret$pcs[,1] = ret$pcs[,1] * -1
}
if (verbose){
cors = stats::cor(expr, ret$pcs[,1]); n_pos = sum(cors[,1] > 0)
pct <- as.character(as.integer(100 * round(n_pos/base::length(cors[,1]), 2)))
clen <- as.character(base::length(cors[,1]))
base::message(base::paste0(pct, "% of ", clen, " marker genes correlate positively with PC1 for cell type ", ct))
}
return(ret)
})
return(ctp)
}
#' Performs marker-based decomposition of bulk expression using marker genes
#'
#' Estimates relative abundances of cell types from PCA-based decomposition.
#' Uses a list of marker genes to subset the expression data, and returns the
#' first PC of each sub-matrix as the cell type fraction estimates.
#' Optionally, weights for each marker gene can be used to prioritize genes
#' that are highly expressed in the given cell type.
#'
#' Note that this method expects the input bulk data to be normalized, unlike
#' the reference-based method.
#'
#' @param bulk.eset Expression Set. Normalized bulk expression data.
#' @param markers Data frame with columns specifying cluster and gene,
#' and optionally a column for weights, typically the fold-change of the gene.
#' Important that the genes for each cell type are row-sorted by signficance.
#' @param ct_col Character string. Column name specifying cluster/cell type
#' corresponding to each marker gene in \strong{markers}.
#' @param gene_col Character string. Column name specifying gene names in
#' \strong{markers}.
#' @param min_gene Numeric. Min number of genes to use for each cell type.
#' @param max_gene Numeric. Max number of genes to use for each cell type.
#' @param weighted Boolean. Whether to use weights for gene prioritization
#' @param w_col Character string. Column name for weights, such as "avg_logFC",
#' in \strong{markers}
#' @param unique_markers Boolean. If TRUE, subset markers to include only genes
#' that are markers for only one cell type
#' @param verbose Boolean. Whether to print log info during decomposition.
#' Errors will be printed regardless.
#' @return A List. Slot \strong{bulk.props} contains estimated relative cell
#' type abundances. Slot \strong{var.explained} contains variance explained by
#' first 20 PCs for cell type marker genes. Slot \strong{genes.used} contains
#' vector of genes used for decomposition.
#' @examples
#' library(Biobase)
#' sim.data <- SimulateData(n.ind=10, n.genes=100, n.cells=100,
#' cell.types=c("Neurons", "Astrocytes", "Microglia"),
#' avg.props=c(.5, .3, .2))
#' res <- MarkerBasedDecomposition(sim.data$bulk.eset, sim.data$markers, weighted=FALSE)
#' estimated.cell.proportions <- res$bulk.props
#'
#' @export
MarkerBasedDecomposition <- function(bulk.eset,
markers,
ct_col="cluster",
gene_col="gene",
min_gene = 5,
max_gene = 200,
weighted=FALSE,
w_col = "avg_logFC",
unique_markers = TRUE,
verbose=TRUE){
# Check input
if ( ! methods::is(bulk.eset, "ExpressionSet") ) {
base::stop("Expression data should be in ExpressionSet")
}
if (min_gene > max_gene){
base::stop(base::paste0(base::sprintf("min_gene (set at %i) ", min_gene),
"must be less than or equal to max_gene ",
base::sprintf("(set at %i)\n", max_gene)))
}
if (min_gene <= 0){
base::stop("'min_gene' must be greater than or equal to 1")
}
# Get unique markers if applicable
if (unique_markers){
if (verbose) message("Getting unique markers")
# Remove gene rows from markers data frame that are shared
markers <- GetUniqueMarkers(markers, gene_col=gene_col)
}
cg <- intersect(unique(markers[,gene_col]), rownames(bulk.eset))
if (length(cg) == 0) {
base::stop("No overlapping genes between markers and bulk.eset")
}
markers <- markers[markers[,gene_col] %in% cg,]
# Check if there are enough markers
n_genes_clust <- table(markers[,ct_col])
if (any(n_genes_clust < min_gene)) {
nctbelow <- sum(n_genes_clust < min_gene)
ctbelow <- names(n_genes_clust)[n_genes_clust < min_gene]
base::stop(ngettext(nctbelow, "Cell type ", "Cell types "),
paste(ctbelow, collapse = ", "),
ngettext(nctbelow, " has ", " have "),
"less than min_gene=",
as.character(min_gene),
" marker genes")
}
# Throw warning if less than 5 markers used for decomposition
if (verbose){
if (any(n_genes_clust < 5)){
nctbelow <- sum(n_genes_clust < 5)
ctbelow <- names(n_genes_clust)[n_genes_clust < 5]
base::warning("WARN: Less than 5 marker genes available for ",
"PCA-based decomposition in ",
ngettext(nctbelow, "cell type ", "cell types "),
paste(ctbelow, collapse = ", "),
". Estimated cell type proportions may be ",
"unreliable")
}
}
markers[,ct_col] <- as.character(markers[,ct_col])
cell_types <- sort(unique(markers[,ct_col]))
n_ct <- length(cell_types)
n_s <- base::ncol(bulk.eset)
if (verbose){
base::message(base::paste0("Estimating proportions for ",
base::sprintf("%i cell types in %i samples",
n_ct, n_s)))
}
# Remove zero-variance genes
bulk.eset <- FilterZeroVarianceGenes(bulk.eset, verbose)
# Get cell type proportions
ctp <- GetCTP(bulk = bulk.eset,
cell_types = cell_types,
markers = markers,
ct_col = ct_col,
gene_col = gene_col,
min_gene = min_gene,
max_gene = max_gene,
weighted = weighted,
w_col = w_col,
verbose = verbose)
names(ctp) <- cell_types
ctp_pc1 <- base::lapply(ctp, function(x) x$pcs[,1])
ctp_pc1 <- base::do.call(cbind, ctp_pc1)
# Check if all proportions are correlated with each other
ctp_cors <- stats::cor(ctp_pc1)
ctp_cors <- CorTri(ctp_cors)
if (verbose & all(ctp_cors > 0)){
base::warning("WARN: All cell type proportion estimates are correlated ",
"positively with each other. Check to make sure the ",
"expression data is properly normalized")
}
# Return results in list
ctp_pc1 <- base::t(ctp_pc1)
ctp_varexpl <- base::sapply(ctp, function(x) x$sdev[1:20])
rownames(ctp_varexpl) <- base::paste0("PC", base::as.character(1:20))
genes_used <- base::lapply(ctp, function(x) x$genes)
if (verbose) message("Finished estimating cell type proportions using PCA")
return(list(bulk.props=ctp_pc1,
var.explained=ctp_varexpl,
genes.used=genes_used))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.