R/MackChainLadderFunctions.R

Defines functions Asymetrie quantile.MackChainLadder residuals.MackChainLadder plot.MackChainLadder print.MackChainLadder summary.MackChainLadder tail_SE tail_E estimate.sigma TotalMack.S.E MackRecursive.S.E Mack.S.E MackChainLadder

Documented in MackChainLadder plot.MackChainLadder print.MackChainLadder quantile.MackChainLadder residuals.MackChainLadder summary.MackChainLadder

## Author: Markus Gesmann
## Copyright: Markus Gesmann, markus.gesmann@gmail.com
## Date:10/11/2007
## Date:08/09/2008
## Date:22/03/2009
## Date:25/05/2010 Dan

MackChainLadder <- function(
  Triangle,
  weights=1,
  alpha=1,
  est.sigma="log-linear",
  tail=FALSE,
  tail.se=NULL,
  tail.sigma=NULL,
  mse.method = "Mack")
{
  ## idea: have a list for tail factor
  ## tail=list(f=FALSE, f.se=NULL, sigma=NULL, F.se=NULL)
  ##
  # 2013-02-25 Parameter risk recursive formula may have a third term per
  #   Murphy and BBMW
  if (! mse.method %in% c("Mack", "Independence")) stop("mse.method must be 'Mack' or 'Independence'")
  
  Triangle <- checkTriangle(Triangle)
  m <- dim(Triangle)[1]
  n <- dim(Triangle)[2]
  
  ## Create chain ladder models
  
  ## Mack uses alpha between 0 and 2 to distinguish
  ## alpha = 0 straight averages
  ## alpha = 1 historical chain ladder age-to-age factors
  ## alpha = 2 ordinary regression with intercept 0
  
  ## However, in Zehnwirth & Barnett they use the notation of delta, whereby delta = 2 - alpha
  ## the delta is than used in a linear modelling context.
  delta <- 2-alpha
  CL <- chainladder(Triangle, weights=weights, delta=delta)
  alpha <- 2 - CL$delta
  
  # Estimate expected values and standard errors in four steps:
  # 1) Squaring the Triangle: Expected values and f/F SE's from the data in the triangle
  # 2) Expected values and f/F SE's from the tail factor specifications
  # 3) Process Risk and Parameter Risk estimates of the squared triangle (incl tail column)
  # 3) Expected values and SE's for the totals-across-origin-periods of the predicted values
  
  
  ## 1) Squaring the Triangle
  
  ## EXPECTED VALUES: Predict the chain ladder models
  FullTriangle <- predict.ChainLadder(list(Models=CL[["Models"]], Triangle=Triangle))
  ## f/F SE's
  StdErr <- Mack.S.E(CL[["Models"]], FullTriangle, est.sigma = est.sigma,
                     weights = CL[["weights"]], alpha = alpha)
  
  ## 2) Tail
  ## Check for tail factor
  if(is.logical(tail)){
    if(tail){
      tail <- tailfactor(StdErr$f)
      tail.factor <- tail$tail.factor
      StdErr$f <- c(StdErr$f, tail.factor = tail.factor)
    }else{
      #            tail.factor <- tail
      # MunichChainLadder needs an 'f' vector as long as the triangle is wide
      #   and adding on a harmless tail doesn't seem to cause any 
      #   Mack difficulties
      # Default will not be named in the output
      tail.factor <- 1.000
      StdErr$f <- c(StdErr$f, tail.factor)
    }
  }else{
    #        if(is.numeric(tail))
    # Documentation says tail must be logic or numeric
    tail.factor <- as.numeric(tail)
    StdErr$f <- c(StdErr$f, tail.factor = tail.factor)
  }
  # Then finally, ...
  if (tail.factor > 1) {
    ## EXPECTED VALUES
    FullTriangle <- tail_E(FullTriangle, tail.factor)
    ## STANDARD ERRORS
    ## Estimate the standard error of f and F in the tail
    ##  If tail.se and/or tail.sigma provided, return those values
    StdErr <- tail_SE(FullTriangle, StdErr, Total.SE, tail.factor,
                      tail.se = tail.se, tail.sigma = tail.sigma,
                      alpha = alpha)
  }
  
  ## 3) Calculate process and parameter risks of the predicted loss amounts
  StdErr <- c(StdErr, MackRecursive.S.E(FullTriangle, StdErr$f, StdErr$f.se, StdErr$F.se, mse.method = mse.method))
  
  ## 4) Total-across-origin-periods by development period
  ## EXPECTED VALUES
  ##   Not complicated. Not required at this time.
  ## STANDARD ERRORS
  ## Calculate process and parameter risk for the sum of the predicted loss amounts
  Total.SE <- TotalMack.S.E(FullTriangle, StdErr$f, StdErr$f.se, StdErr$F.se, StdErr$FullTriangle.procrisk, mse.method = mse.method)
  
  ## Collect the output
  output <- list()
  output[["call"]] <-  match.call(expand.dots = FALSE)
  output[["Triangle"]] <- Triangle
  output[["FullTriangle"]] <- FullTriangle
  output[["Models"]] <- CL[["Models"]]
  output[["f"]] <- StdErr$f
  output[["f.se"]] <- StdErr$f.se
  output[["F.se"]] <- StdErr$F.se
  output[["sigma"]] <- StdErr$sigma
  output[["Mack.ProcessRisk"]]   <- StdErr$FullTriangle.procrisk  # new dmm
  output[["Mack.ParameterRisk"]] <- StdErr$FullTriangle.paramrisk  # new dmm
  output[["Mack.S.E"]] <- sqrt(StdErr$FullTriangle.procrisk^2 + StdErr$FullTriangle.paramrisk^2)
  output[["weights"]] <- CL$weights
  output[["alpha"]] <- alpha
  ## total.procrisk <- apply(StdErr$FullTriangle.procrisk, 2, function(x) sqrt(sum(x^2)))
  output[["Total.Mack.S.E"]] <- Total.SE[1] # [1] removes attributes
  output[["Total.ProcessRisk"]] <- attr(Total.SE, "processrisk")
  output[["Total.ParameterRisk"]] <- attr(Total.SE, "paramrisk")
  output[["tail"]] <- tail
  class(output) <- c("MackChainLadder", "TriangleModel", "list")
  return(output)
}

##############################################################################
## Calculation of the mean squared error and standard error
## mean squared error = stochastic error (process variance) + estimation error
## standard error = sqrt(mean squared error)
approx.equal <- function (x, y, tol=.Machine$double.eps^0.5) abs(x-y)<tol
Mack.S.E <- function(MackModel, FullTriangle, est.sigma="log-linear", weights, alpha) {
  n <- ncol(FullTriangle)
  m <- nrow(FullTriangle)
  f <- rep(1, n - 1)
  f.se <- rep(0, n - 1)
  sigma <- rep(0, n - 1)
  
  ## Extract estimated slopes, std. error and sigmas
  ## 2015-10-9 Replace lm's warning with more appropriate message
  smmry <- suppressWarnings(lapply(MackModel, summary))
  f <- sapply(smmry, function(x) x$coef["x","Estimate"])
  f.se <- sapply(smmry, function(x) x$coef["x","Std. Error"])
  sigma <- sapply(smmry, function(x) x$sigma)
  df <- sapply(smmry, function(x) x$df[2L])
  tolerance <- .Machine$double.eps
  perfect.fit <- (df > 0) & (f.se < tolerance)
  w <- which(perfect.fit)
  if (length(w)) {
    warn <- "Information: essentially no variation in development data for period(s):\n"
    nms <- colnames(FullTriangle)
    periods <- paste0("'", paste(nms[w], nms[w+1], sep = "-"), "'")
    warn <- c(warn, paste(periods, collapse = ", "))
    # Print warning message
    warning(warn)
  }
  #   
  isna <- is.na(sigma)
  ## Think about weights!!!
  
  if(est.sigma[1] %in% "log-linear"){
    if (sum(!isna) == 1) {
      warning(paste("Too few (1) link ratios for fitting 'loglinear' model to estimate sigma_n.",
                    "est.sigma will be overwritten to 'Mack'.\n",
                    "Mack's estimation method will be used instead."))
      est.sigma <- "Mack"
    }
    else {
      ## estimate sigma[n-1] via log-linear regression
      sig.model <- suppressWarnings(estimate.sigma(sigma))
      sigma <- sig.model$sigma
      
      p.value.of.model <- tryCatch(summary(sig.model$model)$coefficient[2,4],
                                   error = function(e) e)
      if (inherits(p.value.of.model, "error") |
          is.infinite(p.value.of.model) |
          is.nan(p.value.of.model)
      ) {
        warning(paste("'loglinear' model to estimate sigma_n doesn't appear appropriate.\n",
                      "est.sigma will be overwritten to 'Mack'.\n",
                      "Mack's estimation method will be used instead."))
        est.sigma <- "Mack"
      }
      else
        if(p.value.of.model > 0.05){
          warning(paste("'loglinear' model to estimate sigma_n doesn't appear appropriate.",
                        "\np-value > 5.\n",
                        "est.sigma will be overwritten to 'Mack'.\n",
                        "Mack's estimation method will be used instead."))
          
          est.sigma <- "Mack"
        }
      else{
        f.se[isna] <- sigma[isna]/sqrt(weights[1,isna]*FullTriangle[1,isna]^alpha[isna])
      }
    }
  }
  if(est.sigma[1] %in% "Mack"){
    for(i in which(isna)){   # usually i = n - 1
      ratio <- (sigma[i - 1]^4/sigma[i - 2]^2) # Bug fix: sigma[i - 2]^2 could be zero
      if(is.nan(ratio) | is.infinite(ratio)){ 
        sigma[i] <- sqrt(abs(min(sigma[i - 2]^2, sigma[i - 1]^2)))  
      }else{
        sigma[i] <- sqrt(abs(min(ratio, min(sigma[i - 2]^2, sigma[i - 1]^2))))  
      }
      f.se[i] <- sigma[i]/sqrt(weights[1,i]*FullTriangle[1,i]^alpha[i])
    }
  }
  if(is.numeric(est.sigma)){
    # Markus, I'm not sure what your intention is in this next loop when the lengths of est.sigma and sigma differ
    for(i in seq(along=est.sigma)){
      l <- length(est.sigma)
      # BUG?! If length(est.sigma) > n, then n-i could be negative
      sigma[n-i] <- est.sigma[l-i+1]
      f.se[n-i] <- sigma[n-i]/sqrt(weights[1,n-i]*FullTriangle[1,n-i]^alpha[n-i])
    }
  }
  
  W <- weights
  W[is.na(W)] <- 1
  F.se <- t(sigma/t(sqrt(W[,-n]*t(t(FullTriangle[,-n])^alpha[-n]))))
  
  return(list(sigma = sigma,
              f = f,
              f.se = f.se,
              F.se = F.se)
  )
}
################################################################
MackRecursive.S.E <- function(FullTriangle, f, f.se, F.se, mse.method = "Mack"){
  n <- ncol(FullTriangle)
  m <- nrow(FullTriangle)
  
  FullTriangle.procrisk <- FullTriangle[, 1:n] * 0
  FullTriangle.paramrisk <- FullTriangle[, 1:n] * 0
  
  ## Recursive Formula
  colindex <- 1:(n-1)
  for (k in colindex) {
    for (i in (m-k+1):m) {
      FullTriangle.procrisk[i,k+1] <- sqrt(
        FullTriangle[i,k]^2*(F.se[i,k]^2)
        + FullTriangle.procrisk[i,k]^2*f[k]^2
      )
      FullTriangle.paramrisk[i,k+1] <- sqrt(
        FullTriangle[i,k]^2*(f.se[k]^2)
        + FullTriangle.paramrisk[i,k]^2*f[k]^2
        # 2013-02-25 Parameter risk recursive formula may have a third term
        + ifelse(mse.method == "Mack", 0, FullTriangle.paramrisk[i, k]^2 * (f.se[k]^2))
      )
    }
  }
  
  return(list(FullTriangle.procrisk=FullTriangle.procrisk,
              FullTriangle.paramrisk=FullTriangle.paramrisk))
}

################################################################################
## Total reserve SE

TotalMack.S.E <- function(FullTriangle, f, f.se, F.se, FullTriangle.procrisk, mse.method = "Mack") {
  # 2013-02-25
  # Parameter Risk and Process Risk components of Total Risk broken out
  
  # The current program design expects a scalar, total.seR, from this 
  #   function equal to the total risk of the total reserve.
  #   So as not to break existing code, the Parameter Risk and 
  #   Process Risk vectors (one element per column) are attached as attributes 
  
  C <- FullTriangle
  n <- ncol(C)
  m <- nrow(C)
  
  total.paramrisk <- numeric(n)
  
  # Assumption is that origin years are independent, therefore
  #    process variance is additive
  total.procrisk <- sqrt(colSums(FullTriangle.procrisk^2, na.rm = TRUE))
  
  # For parameter risk recursion, the sum of future loss expected values
  #   plus the diagonal value, by development age, comes in handy.
  # Currently, code relies on the fact that nrows(triangle) >= ncols
  #   Actually, function 'checkTriangle' makes sure Triangle is square
  M <- sapply(1:ncol(FullTriangle), function(k) sum(FullTriangle[(m + 1 - k):m, k], na.rm = TRUE))
  
  for(k in c(1:(n-1))){
    #        total.seR[k+1] <- sqrt(total.seR[k]^2 * f[k]^2 +
    #                               sum(C[c((m+1-k):m),k]^2 *
    #                                   (F.se[c((m+1-k):n),k]^2),na.rm=TRUE)
    #                               + sum(C[c((m+1-k):m),k],na.rm=TRUE)^2 * f.se[k]^2 )
    total.paramrisk[k + 1] <- sqrt(
      sum(M[k], na.rm = TRUE)^2 * f.se[k]^2 +
        total.paramrisk[k]^2 * f[k]^2 +
        ifelse(mse.method == "Mack", 0, total.paramrisk[k]^2 * f.se[k]^2))
  }
  
  # The scalar returned is the total risk of total reserves in the rightmost column
  total.seR <- sqrt(total.procrisk^2 + total.paramrisk^2)[n]
  attr(total.seR, "processrisk") <- total.procrisk
  attr(total.seR, "paramrisk") <- total.paramrisk
  
  return(total.seR)
}

##############################################################################

estimate.sigma <- function(sigma){
  if(!all(is.na(sigma))){
    n <- length(sigma)
    dev <- 1:n
    my.dev <- dev[!is.na(sigma) & sigma > 0]
    my.model <- lm(log(sigma[my.dev]) ~ my.dev)
    sigma[is.na(sigma)] <- exp(predict(my.model, newdata=data.frame(my.dev=dev[is.na(sigma)])))
  }
  
  return(list(sigma=sigma, model=my.model))
}


########################################################################
## Estimate expected value when tail

tail_E <- function(FullTriangle, tail.factor){
  n <- ncol(FullTriangle)
  m <- nrow(FullTriangle)
  
  FullTriangle <- cbind(FullTriangle, FullTriangle[,n] * tail.factor)
  dimnames(FullTriangle) <- list(origin=dimnames(FullTriangle)[[1]],
                                 dev=c(dimnames(FullTriangle)[[2]][1:n], "Inf"))
  return(FullTriangle)
}

########################################################################
## Estimate standard error for tail

tail_SE <- function(FullTriangle, StdErr, Total.SE, tail.factor, 
                    tail.se = NULL, tail.sigma = NULL, alpha) {
  n <- ncol(FullTriangle)
  m <- nrow(FullTriangle)
  
  ## Idea: linear model for f, estimate dev for tail factor
  ## linear model for f.se and sigma and put dev from above in
  ## 2013-02-28: The tail factor is given and stored in StdEff$f[n-1];
  ##    want to relate the f.se's and sigma's from link ratios estimated
  ##    from the interior of the triangle to the given tail. 
  ##    The link ratios from the interior of the triangle are stored in
  ##    StdEff$f[1:(n-2)].
  stopifnot(n > 2) # Must have at least two columns in the original triangle
  # to impute estimates for the tail-driven, 
  # previously c-bind-ed Ultimate column
  start <- 1
  .f <- StdErr$f[start:(n - 2)]
  .dev <- c(start:(n - 2))
  ##    mf <- lm(log(.f[.f>1]-1) ~ .dev[.f>1])
  mf <- lm(log(.f-1) ~ .dev)
  tail.pos <- (log(StdErr$f[n - 1] - 1) - coef(mf)[1]) / coef(mf)[2]
  
  if(is.null(tail.se)){
    .fse <- StdErr$f.se[start:(n-2)]
    mse <- lm(log(.fse) ~ .dev)
    tail.se <- exp(predict(mse, newdata=data.frame(.dev=tail.pos)))
  }
  StdErr$f.se <- c(StdErr$f.se, tail.se = tail.se)
  
  if(is.null(tail.sigma)){
    .sigma <- StdErr$sigma[start:(n-2)]
    msig <- lm(log(.sigma) ~ .dev)
    tail.sigma <- exp(predict(msig, newdata = data.frame(.dev = tail.pos)))
  }
  StdErr$sigma <- c(StdErr$sigma, tail.sigma = as.numeric(tail.sigma))
  ## estimate the standard error of the tail factor ratios
  se.F.tail <- tail.sigma / sqrt(FullTriangle[, n - 1]^alpha[n-2])
  StdErr$F.se <- cbind(StdErr$F.se, se.F.tail)
  
  return(StdErr)
}




##############################################################################
## Summary
##
summary.MackChainLadder <- function(object,...){
  ## Summarise my results
  Latest <- getLatestCumulative(object$Triangle)
  
  ex.origin.period <- Latest!=0
  
  Ultimate <- object[["FullTriangle"]][,ncol(object[["FullTriangle"]])]
  Dev.To.Date <- Latest/Ultimate
  IBNR <- Ultimate-Latest
  Mack.S.E <- object[["Mack.S.E"]][,ncol(object[["Mack.S.E"]])]
  CV <- Mack.S.E/(Ultimate-Latest)
  
  ByOrigin <- data.frame(Latest, Dev.To.Date, Ultimate, IBNR, Mack.S.E, CV)
  names(ByOrigin)[6]="CV(IBNR)"
  ByOrigin <- ByOrigin[ex.origin.period,]
  
  Totals <-  c(sum(Latest,na.rm=TRUE),
               sum(Latest,na.rm=TRUE)/sum(Ultimate,na.rm=TRUE),
               sum(Ultimate,na.rm=TRUE),
               sum(IBNR,na.rm=TRUE), object[["Total.Mack.S.E"]],
               object[["Total.Mack.S.E"]]/sum(IBNR,na.rm=TRUE)
  )
  # Totals <- c(Totals, round(x[["Total.Mack.S.E"]]/sum(res$IBNR,na.rm=TRUE),2))
  Totals <- as.data.frame(Totals)
  
  colnames(Totals)=c("Totals")
  rownames(Totals) <- c("Latest:","Dev:","Ultimate:",
                        "IBNR:","Mack S.E.:",
                        "CV(IBNR):")
  
  output <- list(ByOrigin=ByOrigin, Totals=Totals)
  return(output)
}

#getLatestCumulative <- function(cumulative.tri)
#  apply(cumulative.tri, 1L, function(x) ifelse(length(w <- which(!is.na(x))) > 0L, x[tail(w, 1L)], x[1L]))

##############################################################################
## print
##
print.MackChainLadder <- function(x,...){
  
  summary.x <- summary(x)
  print(x$call)
  cat("\n")
  print(format(summary.x$ByOrigin, big.mark = ",", digits = 3),...)
  
  Totals <- summary.x$Totals
  rownames(Totals)[5] <- "Mack.S.E"
  Totals[1:6,] <- formatC(Totals[1:6,], big.mark=",",digits=2,format="f")
  cat("\n")
  print(Totals, quote=FALSE)

  invisible(x)
}


################################################################################
## plot
##
plot.MackChainLadder <- function(
  x, mfrow=NULL, title=NULL,
  lattice=FALSE, which=1:6, ...){
  
  .myResult <-  summary(x)$ByOrigin
  
  .FullTriangle <- x[["FullTriangle"]]
  .Triangle <- x[["Triangle"]]
  
  if(is.null(mfrow)){
    mfrow <- c(ifelse(length(which) < 2,1, 
                      ifelse(length(which) < 3, 2,
                             ceiling(length(which)/2))), 
               ifelse(length(which)>2,2,1))
  }
  if(!lattice){
    if(is.null(title)) myoma <- c(0,0,0,0) else myoma <- c(0,0,2,0)
    
    op=par(mfrow=mfrow, oma=myoma, mar=c(4.5,4.5,2,2))
    
    plotdata <- t(as.matrix(.myResult[,c("Latest","IBNR")]))
    n <- ncol(plotdata)
    
    if(1 %in% which){
      
      if(getRversion() < "2.9.0") { ## work around missing feature
        
        bp <- barplot(plotdata,
                      legend.text=c("Latest","Forecast"),
                      ##    args.legend=list(x="topleft"), only avilable from R version >= 2.9.0
                      names.arg=rownames(.myResult),
                      main="Mack Chain Ladder Results",
                      xlab="Origin period",
                      ylab="Amount",#paste(Currency,myUnit),
                      ylim=c(0, max(apply(.myResult[c("Ultimate", "Mack.S.E")],1,sum),na.rm=TRUE)))
        
      }else{
        bp <- barplot(plotdata,
                      legend.text=c("Latest","Forecast"),
                      args.legend=list(x="topleft"),
                      names.arg=rownames(.myResult),
                      main="Mack Chain Ladder Results",
                      xlab="Origin period",
                      ylab="Amount",#paste(Currency,myUnit),
                      ylim=c(0, max(apply(.myResult[c("Ultimate", "Mack.S.E")],1,sum),na.rm=TRUE)))
      }
      ## add error ticks
      ## require("Hmisc")
      .errbar(x=bp, y=.myResult$Ultimate,
              yplus=(.myResult$Ultimate + .myResult$Mack.S.E),
              yminus=(.myResult$Ultimate - .myResult$Mack.S.E),
              cap=0.05,
              add=TRUE)
    }
    if(2 %in% which){
      
      matplot(t(.FullTriangle), type="l",
              main="Chain ladder developments by origin period",
              xlab="Development period", ylab="Amount", #paste(Currency, myUnit)
      )
      matplot(t(.Triangle), add=TRUE)
    }
    Residuals=residuals(x)
    if(3 %in% which){
      plot(standard.residuals ~ fitted.value, data=Residuals,
           ylab="Standardised residuals", xlab="Fitted")
      lines(lowess(Residuals$fitted.value, Residuals$standard.residuals), col="red")
      abline(h=0, col="grey")
    }
    if(4 %in% which){
      plot(standard.residuals ~ origin.period, data=Residuals,
           ylab="Standardised residuals", xlab="Origin period")
      lines(lowess(Residuals$origin.period, Residuals$standard.residuals), col="red")
      abline(h=0, col="grey")
    }
    if(5 %in% which){
      plot(standard.residuals ~ cal.period, data=Residuals,
           ylab="Standardised residuals", xlab="Calendar period")
      lines(lowess(Residuals$cal.period, Residuals$standard.residuals), col="red")
      abline(h=0, col="grey")
    }
    if(6 %in% which){
      plot(standard.residuals ~ dev.period, data=Residuals,
           ylab="Standardised residuals", xlab="Development period")
      lines(lowess(Residuals$dev.period, Residuals$standard.residuals), col="red")
      abline(h=0, col="grey")
    }
    title( title , outer=TRUE)
    par(op)
    
  }else{
    
    ## require(grid)
    ## Set legend 
    fl <-
      grid.layout(nrow = 2, ncol = 4,
                  heights = unit(rep(1, 2), "lines"),
                  widths =
                    unit(c(2, 1, 2, 1),
                         c("cm", "strwidth", "cm",
                           "strwidth"),
                         data = list(NULL, "Chain ladder dev.", NULL,
                                     "Mack's S.E.")))
    
    foo <- frameGrob(layout = fl)
    
    foo <- placeGrob(foo,
                     linesGrob(c(0.2, 0.8), c(.5, .5),
                               gp = gpar(col=1, lty=1)),
                     row = 1, col = 1)
    foo <- placeGrob(foo,
                     linesGrob(c(0.2, 0.8), c(.5, .5),
                               gp = gpar(col=1, lty=3)), 
                     row = 1, col = 3)
    foo <- placeGrob(foo,
                     textGrob(label = "Chain ladder dev."), 
                     row = 1, col = 2)
    foo <- placeGrob(foo,
                     textGrob(label = "Mack's S.E."), 
                     row = 1, col = 4)
    
    long <- expand.grid(origin=as.numeric(dimnames(.FullTriangle)$origin),
                        dev=as.numeric(dimnames(.FullTriangle)$dev))
    long$value <- as.vector(.FullTriangle)
    long$valuePlusMack.S.E <-  long$value + as.vector(x$Mack.S.E)
    long$valueMinusMack.S.E <- long$value - as.vector(x$Mack.S.E)
    sublong <- long[!is.na(long$value),]
    xyplot(valuePlusMack.S.E + valueMinusMack.S.E + value ~ dev |
             factor(origin), data=sublong, t="l", lty=c(3,3,1), as.table=TRUE,
           main="Chain ladder developments by origin period",
           xlab="Development period",
           ylab="Amount",col=1,
           legend = list(top = list(fun = foo)),...)
  }
}
################################################################################
## residuals
##
residuals.MackChainLadder <- function(object,...){
  m <- nrow(object[["Triangle"]])
  n <- ncol(object[["Triangle"]])
  myresiduals <- unlist(lapply(object[["Models"]], resid,...))
  
  standard.residuals <- rep(NA, length(myresiduals))
  
  ## Identify if we have standardized residuals for all items, 
  ## e.g. this is not the case if some weights have been set to zero
  x=lapply(lapply(object$Model, resid), function(x) as.numeric(names(x)))
  y=lapply(lapply(object$Model, rstandard), function(x) as.numeric(names(x)))
  names(y)=1:length(y)
  names(x)=1:length(x)		
  rst <- unlist(lapply(names(x), function(z) x[[z]] %in% y[[z]]))
  ## rst holds the indices with standardised residuals for weights > 0 
  
  standard.residuals[rst] <- unlist(lapply(object[["Models"]], rstandard,...))
  fitted.value <- unlist(lapply(object[["Models"]], fitted))
  origin.period <- as.numeric(unlist(lapply(lapply(object[["Models"]],residuals),names)))
  dev.period <-rep(1:(n-1), sapply(lapply(object[["Models"]],residuals),length))
  cal.period <- origin.period + dev.period - 1
  
  myResiduals <- data.frame(origin.period,
                            dev.period,
                            cal.period,
                            residuals=myresiduals,
                            standard.residuals,
                            fitted.value)
  
  return(na.omit(myResiduals))
}

.errbar <- function (
  x, y, yplus, yminus, cap = 0.015, 
  main = NULL, sub = NULL, 
  xlab = as.character(substitute(x)), 
  ylab = if (is.factor(x) || is.character(x)) "" else as.character(substitute(y)), 
  add = FALSE, lty = 1, type = "p", ylim = NULL, lwd = 1, pch = 16, 
  errbar.col = par("fg"), Type = rep(1, length(y)), ...) 
{
  # Based on code by Frank Harrell, Hmisc package, licence: GPL >= 2
  if (is.null(ylim)) 
    ylim <- range(y[Type == 1], yplus[Type == 1], yminus[Type == 
                                                           1], na.rm = TRUE)
  if (is.factor(x) || is.character(x)) {
    x <- as.character(x)
    n <- length(x)
    t1 <- Type == 1
    t2 <- Type == 2
    n1 <- sum(t1)
    n2 <- sum(t2)
    omai <- par("mai")
    mai <- omai
    mai[2] <- max(strwidth(x, "inches")) + 0.25
    par(mai = mai)
    on.exit(par(mai = omai))
    plot(NA, NA, xlab = ylab, ylab = "", xlim = ylim, ylim = c(1, 
                                                               n + 1), axes = FALSE, ...)
    axis(1)
    w <- if (any(t2)) 
      n1 + (1:n2) + 1
    else numeric(0)
    axis(2, at = c(seq.int(length.out = n1), w), labels = c(x[t1], 
                                                            x[t2]), las = 1, adj = 1)
    points(y[t1], seq.int(length.out = n1), pch = pch, type = type, 
           ...)
    segments(yplus[t1], seq.int(length.out = n1), yminus[t1], 
             seq.int(length.out = n1), lwd = lwd, lty = lty, col = errbar.col)
    if (any(Type == 2)) {
      abline(h = n1 + 1, lty = 2, ...)
      offset <- mean(y[t1]) - mean(y[t2])
      if (min(yminus[t2]) < 0 & max(yplus[t2]) > 0) 
        lines(c(0, 0) + offset, c(n1 + 1, par("usr")[4]), 
              lty = 2, ...)
      points(y[t2] + offset, w, pch = pch, type = type, 
             ...)
      segments(yminus[t2] + offset, w, yplus[t2] + offset, 
               w, lwd = lwd, lty = lty, col = errbar.col)
      at <- pretty(range(y[t2], yplus[t2], yminus[t2]))
      axis(side = 3, at = at + offset, labels = format(round(at, 
                                                             6)))
    }
    return(invisible())
  }
  if (add) 
    points(x, y, pch = pch, type = type, ...)
  else plot(x, y, ylim = ylim, xlab = xlab, ylab = ylab, pch = pch, 
            type = type, ...)
  xcoord <- par()$usr[1:2]
  smidge <- cap * (xcoord[2] - xcoord[1])/2
  segments(x, yminus, x, yplus, lty = lty, lwd = lwd, col = errbar.col)
  if (par()$xlog) {
    xstart <- x * 10^(-smidge)
    xend <- x * 10^(smidge)
  }
  else {
    xstart <- x - smidge
    xend <- x + smidge
  }
  segments(xstart, yminus, xend, yminus, lwd = lwd, lty = lty, 
           col = errbar.col)
  segments(xstart, yplus, xend, yplus, lwd = lwd, lty = lty, 
           col = errbar.col)
  return(invisible())
}


quantile.MackChainLadder <- function(x, probs=c(0.75, 0.95), na.rm = FALSE,
                                     names = TRUE, type = 7,...){
  
  if(! ("MackChainLadder" %in% class(x))){
    stop("x is not a MackChainLadder output")
  }
  
  Latest <- getLatestCumulative(x$Triangle)
  Ultimate <- x[["FullTriangle"]][,ncol(x[["FullTriangle"]])]
  Dev.To.Date <- Latest/Ultimate
  IBNR <- Ultimate-Latest
  Mack.S.E <- x[["Mack.S.E"]][,ncol(x[["Mack.S.E"]])]
  
  CV <- Mack.S.E/IBNR
  
  Skewn <- Asymetrie(x)
  
  ## Cornish-Fisher
  quantile <- qnorm(probs)
  
  ## Cornish-Fisher: by origin period
  
  CF <- (apply(t(quantile), 2, function(q) 
    q + 1/6 * (q^2 - 1) * Skewn$Skewnes))
  QuantilePY <- (1 + CF * CV) * IBNR
  
  ## Cornish-Fisher: totals across origin periods
  CF <- quantile + 1/6*(quantile^2-1) * Skewn$OverSkew/x[["Total.Mack.S.E"]]^3
  TotQuantile <- (1 + CF*x[["Total.Mack.S.E"]]/sum(IBNR))*sum(IBNR)
  TotSkew <- Skewn$OverSkew/x[["Total.Mack.S.E"]]^3
  
  ByOrigin <- data.frame(Skewness=Skewn$Skewnes, 
                         (QuantilePY))
  names(ByOrigin) <- c("Skewness", paste("IBNR ", probs*100, "%", sep=""))
  
  origin <- dimnames(x$Triangle)[[1]]
  
  if(length(origin)==nrow(ByOrigin)){
    rownames(ByOrigin) <- origin
  }
  
  Totals <- as.data.frame(c(TotSkew, TotQuantile))
  
  colnames(Totals)=c("Totals")
  rownames(Totals) <- c("Skewness", paste("IBNR ", probs*100, "%:", sep=""))
  
  output <- list(ByOrigin=ByOrigin, Totals=Totals)
  return(output)
}

##############################################################################
## Calculation of the skewness (Eric Dal Moro - added 31 July 2018)
## 

Asymetrie<- function(x) {
  
  if(! ("MackChainLadder" %in% class(x))){
    stop("x is not a MackChainLadder output")
  }
  
  
  Triangle <- x$Triangle
  FullTriangle <- x$FullTriangle
  
  n <- dim(Triangle)[2]
  
  Skewnes <- c(n-1)
  Skewnesi <- c(n)
  Sk3ki <- c(n)
  Inter <- c(n-1)
  OverSkew <- c(1)
  Variance <- c(n-1)
  Correlation <- matrix(nrow=n-2,ncol=n-2) 
  
  MackModel <- x$Models
  Sigma2<-x$sigma^2
  
  f <- x$f
  f.se <- x$f.se
  sigma <- x$sigma
  
  ## Calculation of the difference between individual chain-ladder coefficients and the chain-ladder coef 
  CLRatio <- function(i, Triangle, f){
    y=Triangle[,i+1]/Triangle[,i] - f[i]
  } 
  
  myModel <- sapply(c(1:(n-1)), CLRatio, Triangle, f)
  
  Interm1<-function(i, yData){
    Interm1 <- sum(yData[c(1:(n-i)),i]^1.5)
  }
  
  Interm2<-function(i, yData){
    Interm2 <- sum(yData[c(1:(n-i)),i])
  }
  
  #Calculation of Sk3k
  
  Skew<- function(i, yModel, yData, Interme1, Interme2){
    #    yModel <- yModel[!is.na(yModel)]
    y=1/(n-i-Interme1[i]^2/Interme2[i]^3)*sum(yData[c(1:(n-i)),i]^1.5*(yModel[c(1:(n-i)),i]^3))
  } 
  
  Interme1 <- sapply(c(1:(n-1)), Interm1, Triangle)
  Interme2 <- sapply(c(1:(n-1)), Interm2, Triangle)
  Interme2<- as.numeric(Interme2)
  Sk3k <- sapply(c(1:(n-1)), Skew, myModel, Triangle, Interme1, Interme2)
  
  for (k in c(1:(n-1)))
  {
    if ((is.infinite(Sk3k[k])) | (is.nan(Sk3k[k])))
    {Sk3k[k]=0}
  }
  
  
  # Calculation of Skewness per accident year
  
  for (k in c(1:(n-1))) {
    Variance[k] <- Triangle[n+1-k,k]^2*Sigma2[k]*(1/Interme2[k]+1/Triangle[n+1-k,k])
    
    if (k<n-1) { Skewnes[k] <- Triangle[n+1-k,k]^1.5*Sk3k[k]+Triangle[n+1-k,k]^3*Sk3k[k]*Interme1[k]/Interme2[k]^3 }
    
    for (j in c((k+1):(n-1))) {
      intermediaire <- 0
      intermediaire1 <- 0
      for (v in c(1:(n-j))) {
        intermediaire <- intermediaire + FullTriangle[v,j]
      }
      
      for (v in c(1:(n-j))) {
        intermediaire1 <- intermediaire1 + FullTriangle[v,j]^1.5
      }
      
      if (k<n-1) {
        Skewnes[k] <- Skewnes[k]*f[j]^3+FullTriangle[n+1-k,j]^1.5*Sk3k[j]*(1+Variance[k]/FullTriangle[n+1-k,j]^2)^(3/8)+3*Sigma2[j]*f[j]*Variance[k]+FullTriangle[n+1-k,j]^3*intermediaire1/intermediaire^3*Sk3k[j]
      }
      if (k<n-1) {
        Variance[k] <- Variance[k]*f[j]^2+FullTriangle[n+1-k,j]^2*Sigma2[j]*(1/intermediaire+1/FullTriangle[n+1-k,j])
      }
      
    }
  }
  
  #Calculation of Mack correlation between accident years (Mack article 1993)
  for (k in c(1:(n-1))) {
    Inter[n-k]<-Sigma2[k]/f[k]^2/Interme2[k]
  }
  
  for (k in c(2:(n-2))) {
    Inter[k]<-Inter[k-1]+Inter[k]
  }
  
  for (k in c(1:(n-2))) {
    for (l in c((k+1):(n-1))) {
      Correlation[k,l-1]<-Inter[k]*FullTriangle[k+1,n]*FullTriangle[l+1,n]/Variance[n-k]^0.5/Variance[n-l]^0.5
    }
  }
  
  #Calculation of overall Skewness across all accident years
  OverSkew<-sum(Skewnes)
  
  for (o in c(1:(n-2))) {
    for (p in c((o+1):(n-1))) {
      OverSkew=OverSkew + 3*Correlation[o,p-1]*(Variance[n-o]*Variance[n-p])^0.5*(Variance[n-o]/FullTriangle[o+1,n]+Variance[n-p]/FullTriangle[p+1,n])*(2+Correlation[o,p-1]*(Variance[n-o]*Variance[n-p])^0.5/(FullTriangle[p+1,n]*FullTriangle[o+1,n]))
      OverSkew=OverSkew + 3*Correlation[o,p-1]^2*(Variance[n-o]*Variance[n-p])*(FullTriangle[o+1,n]+FullTriangle[p+1,n])/(FullTriangle[o+1,n]*FullTriangle[p+1,n])
    }
  }
  
  for (o in c(1:(n-3))) {
    for (p in c((o+1):(n-2))) {
      for (q in c((p+1):((n-1)))) {
        OverSkew=OverSkew + 6*Correlation[o,p-1]*Correlation[p,q-1]*Correlation[o,q-1]*(Variance[n-o]*Variance[n-p]*Variance[n-q])^0.5*((Variance[n-o]*Variance[n-p]*Variance[n-q])^0.5/(FullTriangle[o+1,n]*FullTriangle[p+1,n]*FullTriangle[q+1,n])+Variance[n-o]^0.5/(Correlation[p,q-1]*FullTriangle[o+1,n])+Variance[n-p]^0.5/(Correlation[o,q-1]*FullTriangle[p+1,n])+Variance[n-q]^0.5/(Correlation[o,p-1]*FullTriangle[q+1,n]))
      }
    }
  }
  
  Skewnesi[1]<-0
  Skewnesi[2]<-0
  Sk3ki[1]<-0
  Sk3ki[2]<-0
  
  for (k in c(3:n)) {
    
    Skewnesi[k]<-0
    
    if (Variance[n-k+1]>0) {
      Skewnesi[k]<-Skewnes[n-k+1]/Variance[n-k+1]^1.5
    }
    
    Sk3ki[k]<-Sk3k[n-k+1]
  }  
  
  output <- list()
  output[["Skewnes"]]<-Skewnesi
  output[["Correlation"]]<-Correlation
  output[["OverSkew"]]<-OverSkew
  output[["Sk3k"]]<-Sk3ki
  
  return(output)
}

## End addition Eric Dal Moro 31 July 2018

Try the ChainLadder package in your browser

Any scripts or data that you put into this service are public.

ChainLadder documentation built on Sept. 11, 2024, 8:35 p.m.