R/Coxmos_splsicox.R

Defines functions cv.splsicox_class splsicox_class splsicox

Documented in splsicox

#### ### ##
# METHODS #
#### ### ##

#' sPLS-ICOX
#' @description This function performs a sparse partial least squares individual Cox (sPLS-ICOX)
#' (based on plsRcox R package). The function returns a Coxmos model with the attribute model as
#' "sPLS-ICOX".
#'
#' @details
#' The `sPLS-ICOX` function is an advanced analytical tool tailored for the elucidation of
#' high-dimensional survival data. It amalgamates the principles of sparse partial least squares
#' (sPLS) regression with individual Cox regression, thereby offering a robust mechanism for both
#' dimension reduction and variable selection in the context of survival analysis.
#' Rooted in the methodologies of the `plsRcox` R package, this function operationalizes the
#' sPLS-ICOX model by leveraging the inherent sparsity introduced via the `penalty` parameter.
#' This parameter delineates a stringent criterion for variable retention, wherein only those
#' variables that manifest a P-Value inferior to the threshold defined by `1 - penalty` in the
#' individual Cox analysis are assimilated into the sPLS-ICOX model framework.
#' The parameter `n.comp` demarcates the number of latent components to be computed for the sPLS
#' model. These latent components, which encapsulate salient patterns within the data, subsequently
#' underpin the Cox regression analysis. It is imperative to underscore the necessity of meticulous
#' data preprocessing, especially in the context of qualitative variables. Such variables necessitate
#' binary transformation prior to their integration into the function. Moreover, the function is
#' equipped with options for data centering and scaling, pivotal operations that can significantly
#' influence model performance.
#' Designed with a predilection for right-censored survival data, the function mandates the structuring
#' of the outcome or response variable `Y` into two distinct columns: "time", which chronicles the
#' survival time, and "event", which catalogues the occurrence or non-occurrence of the event of interest.
#'
#' Upon execution, the function yields a comprehensive list encapsulating a plethora of elements
#' germane to the sPLS-ICOX model, inclusive of the normalized data matrices, sPLS weight vectors,
#' loadings, scores, and an exhaustive compilation of survival model metrics.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param n.comp Numeric. Number of latent components to compute for the (s)PLS model (default: 10).
#' @param penalty Numeric. Penalty for variable selection for the individual cox models. Variables
#' with a lower P-Value than 1 - "penalty" in the individual cox analysis will be keep for the
#' sPLS-ICOX approach (default: 0).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#'
#' @return Instance of class "Coxmos" and model "sPLS-ICOX". The class contains the following elements:
#' \code{X}: List of normalized X data information.
#' \itemize{
#'  \item \code{(data)}: normalized X matrix
#'  \item \code{(weightings)}: sPLS weights
#'  \item \code{(weightings_norm)}: sPLS normalize weights
#'  \item \code{(W.star)}: sPLS W* vector
#'  \item \code{(loadings)}: sPLS loadings
#'  \item \code{(scores)}: sPLS scores/variates
#'  \item \code{(E)}: error matrices
#'  \item \code{(x.mean)}: mean values for X matrix
#'  \item \code{(x.sd)}: standard deviation for X matrix
#'  }
#' \code{Y}: List of normalized Y data information.
#' \itemize{
#'  \item \code{(data)}: normalized X matrix
#'  \item \code{(y.mean)}: mean values for Y matrix
#'  \item \code{(y.sd)}: standard deviation for Y matrix'
#'  }
#' \code{survival_model}: List of survival model information.
#' \itemize{
#'  \item \code{fit}: coxph object.
#'  \item \code{AIC}: AIC of cox model.
#'  \item \code{BIC}: BIC of cox model.
#'  \item \code{lp}: linear predictors for train data.
#'  \item \code{coef}: Coefficients for cox model.
#'  \item \code{YChapeau}: Y Chapeau residuals.
#'  \item \code{Yresidus}: Y residuals.
#' }
#'
#' \code{n.comp}: Number of components selected.
#'
#' \code{var_by_component}: Variables selected by each component.
#'
#' \code{call}: call function
#'
#' \code{X_input}: X input matrix
#'
#' \code{Y_input}: Y input matrix
#'
#' \code{alpha}: alpha value selected
#'
#' \code{nsv}: Variables removed by cox alpha cutoff.
#'
#' \code{nzv}: Variables removed by remove_near_zero_variance or remove_zero_variance.
#'
#' \code{nz_coeffvar}: Variables removed by coefficient variation near zero.
#'
#' \code{class}: Model class.
#'
#' \code{time}: time consumed for running the cox analysis.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @references
#' \insertRef{Bastien_2005}{Coxmos}
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' X <- X_proteomic[,1:50]
#' Y <- Y_proteomic
#' splsicox(X, Y, n.comp = 2, penalty = 0.5, x.center = TRUE, x.scale = TRUE)

splsicox <- function(X, Y,
                     n.comp = 4, penalty = 0,
                     x.center = TRUE, x.scale = FALSE,
                     remove_near_zero_variance = TRUE, remove_zero_variance = FALSE, toKeep.zv = NULL,
                     remove_non_significant = FALSE, alpha = 0.05,
                     MIN_EPV = 5, returnData = TRUE, verbose = FALSE){

  # tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
  tol = 1e-10

  t1 <- Sys.time()
  y.center = y.scale = FALSE
  FREQ_CUT <- 95/5

  #### Original data
  X_original <- X
  Y_original <- Y

  time <- Y[,"time"]
  event <- Y[,"event"]

  #### Check values classes and ranges
  params_with_limits <- list("penalty" = penalty)
  check_min0_less1_variables(params_with_limits)

  params_with_limits <- list("alpha" = alpha)
  check_min0_max1_variables(params_with_limits)

  numeric_params <- list("n.comp" = n.comp,
                         "MIN_EPV" = MIN_EPV, "tol" = tol)
  check_class(numeric_params, class = "numeric")

  logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
                         #"y.center" = y.center, "y.scale" = y.scale,
                         "remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
                         "remove_non_significant" = remove_non_significant, "returnData" = returnData, "verbose" = verbose)
  check_class(logical_params, class = "logical")

  #### Check rownames
  lst_check <- checkXY.rownames(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  #### Check colnames in X for Illegal Chars (affect cox formulas)
  X <- checkColnamesIllegalChars(X)

  #### REQUIREMENTS
  checkX.colnames(X)
  checkY.colnames(Y)
  lst_check <- checkXY.class(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  #### ZERO VARIANCE - ALWAYS
  lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
                                          remove_near_zero_variance = remove_near_zero_variance,
                                          remove_zero_variance = remove_zero_variance,
                                          toKeep.zv = toKeep.zv,
                                          freqCut = FREQ_CUT)
  X <- lst_dnz$X
  variablesDeleted <- lst_dnz$variablesDeleted

  #### COEF VARIATION
  lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
  X <- lst_dnzc$X
  variablesDeleted_cvar <- lst_dnzc$variablesDeleted

  #### SCALING
  lst_scale <- XY.scale(X, Y, x.center, x.scale, y.center, y.scale)
  Xh <- lst_scale$Xh
  Yh <- lst_scale$Yh
  xmeans <- lst_scale$xmeans
  xsds <- lst_scale$xsds
  ymeans <- lst_scale$ymeans
  ysds <- lst_scale$ysds

  X_norm <- Xh

  #### MAX PREDICTORS
  n.comp <- check.maxPredictors(X, Y, MIN_EPV, n.comp)

  #### INITIALISING VARIABLES
  Ts <- NULL
  W <- NULL
  W_norm <- NULL
  P <- NULL
  E <- list(Xh)

  XXNA <- is.na(Xh) #TRUE is NA
  YNA <- is.na(Yh) #TRUE is NA

  #### ### ### ### ### ### ### ### ### ### ### ###
  #### ### ### ### ### ### ### ### ### ### ### ###
  ##                                            ##
  ##  Beginning of the loop for the components  ##
  ##                                            ##
  #### ### ### ### ### ### ### ### ### ### ### ###
  #### ### ### ### ### ### ### ### ### ### ### ###

  #Update NAs by 0s
  if(length(XXNA)>0){
    Xh[XXNA] <- 0
  }

  var_by_component <- list()
  stopped = FALSE
  for(h in 1:n.comp){

    #### ### ### ### ### ### ### ### ### ### ### #
    #                                            #
    #     Weight computation for each model      #
    #                                            #
    #### ### ### ### ### ### ### ### ### ### ### #

    #### ### ### ##
    ##  PLS-COX  ##
    #### ### ### ##

    #2. wh <- individual cox regression vector

    # returning wh[,1] coefficients and wh[,2] p-values
    # using Ts as extra information but Xh is already deflacted...
    # have to be as NULL
    wh <- getIndividualCox(data = cbind(Xh, Yh), time_var = "time", event_var = "event", score_data = NULL, verbose = verbose)

    # use the same order as Xh
    wh <- wh[colnames(Xh),]

    if(all(is.na(wh))){
      message(paste0("Stopping at component ", h-1, ": The weight vector could not be computed.."))
      h = h-1
      stopped = TRUE
      break
    }

    ### ## ## ##
    #filter variables by p-val cutoff
    ### ## ## ##
    index2zero <- which(wh[,2,drop = TRUE]>(1-penalty))# 1-penalty because is a penalty - remove 0.8 of variables equals to keep 0.2
    index2keep <- which(wh[,2,drop = TRUE]<=(1-penalty))

    if(length(index2keep)==0){
      if(verbose){
        message(paste0("Stopping at component ", h-1, ": No significant variables found in component ", h,"."))
      }
      h = h-1
      break
    }

    wh[index2zero,1] <- 0
    var_by_component[[h]] <- rownames(wh)[index2keep]

    nm <- rownames(wh)
    nm_keep <- var_by_component[[h]]
    wh <- wh[,1,drop = TRUE] #keep only coefficients
    names(wh) <- nm

    sub_wh <- wh[nm_keep] #keep only coeff not zero

    #3. wh <- wh / ||wh||
    wh_norm <- data.frame(wh)
    wh_norm[,1] <- 0
    sub_wh_norm <- sub_wh/as.vector(sqrt(sum(sub_wh^2))) #as.vector(sqrt(t(wh) %*% wh))

    wh_norm[nm_keep,] <- sub_wh_norm

    #4. t = Xh wh / wh'wh
    #4. t = Xh wh_norm (solo si wh ya normalizado)

    # th <- (Xh[,nm_keep,drop = FALSE] %*% sub_wh_norm)/((!XXNA[,nm_keep,drop = FALSE]) %*% sub_wh_norm^2) # do not remember why
    th <- Xh[,nm_keep,drop = FALSE] %*% sub_wh_norm

    #th <- t(lm(t(Xh)~0 + sub_wh_norm)$coefficients)/((!XXNA)%*%(sub_wh_norm^2))

    #deberia ser...
    #th <- t(lm(t(Xh)~0+wh)$coefficients)
    #th <- th/as.vector(sqrt(sum(th^2)))

    #5. p
    #ph <- t(Xh) %*% th/as.vector(t(th) %*% th)
    #normalization for NAs

    ph <- data.frame(wh)
    ph[,1] <- 0

    sub_ph <- t((t(th) %*% Xh[,nm_keep,drop = FALSE]) / (as.vector(t(th) %*% th)))

    ph[nm_keep,] <- sub_ph

    #6. Residuals
    #res$residXX <- XXwotNA-temptt%*%temppp #residuals to the new matrix to get next components
    # Xh_aux <- Xh[,nm_keep] - (th %*% t(sub_ph))
    # Xh[,nm_keep] <- Xh_aux
    Xh[,nm_keep] <- Xh[,nm_keep,drop=F] - (th %*% t(sub_ph))

    Ts <- cbind(Ts, th)
    P <- cbind(P, as.matrix(ph))
    W <- cbind(W, wh)
    W_norm <- cbind(W_norm, as.matrix(wh_norm))
    E[[h]] <- Xh

  }

  # Problems computing firts component
  if(h==0){ #no significant individual cox model at first component
    func_call <- match.call()
    # invisible(gc())

    t2 <- Sys.time()
    time <- difftime(t2,t1,units = "mins")

    return(splsicox_class(list(X = list("data" = if(returnData) X_norm else NA,
                                        "weightings" = NULL,
                                        "weightings_norm" = NULL,
                                        "W.star" = NULL, "loadings" = NULL,
                                        "scores" = NULL,
                                        "E" = NULL,
                                        "x.mean" = xmeans, "x.sd" = xsds),
                               Y = list("data" = Yh,
                                        "y.mean" = ymeans, "y.sd" = ysds),
                               beta_matrix = NULL, #NEED TO BE COMPUTED
                               survival_model = NULL,
                               n.comp = h,
                               penalty = penalty,
                               var_by_component = var_by_component, #variables selected for each component
                               call = if(returnData) func_call else NA,
                               X_input = if(returnData) X_original else NA,
                               Y_input = if(returnData) Y_original else NA,
                               nzv = variablesDeleted,
                               nz_coeffvar = variablesDeleted_cvar,
                               class = pkg.env$splsicox,
                               time = time)))
  }

  colnames(Ts) <- paste0("comp_", 1:h)
  colnames(P) <- paste0("comp_", 1:h)
  colnames(W) <- paste0("comp_", 1:h)
  colnames(W_norm) <- paste0("comp_", 1:h)
  names(var_by_component) <- paste0("comp_", 1:h)

  #### ### ### ### ### ### ### ### ### ### ### #
  #                                            #
  #      Computation of the coefficients       #
  #      of the model with kk components       #
  #                                            #
  #### ### ### ### ### ### ### ### ### ### ### #

  #### ### ### ### ### ### ### ### ### ### ##
  ###              PLS-COX                 ##
  #### ### ### ### ### ### ### ### ### ### ##

  cox_model = NULL

  d <- as.data.frame(cbind(as.matrix(Ts)))
  h <- ncol(Ts)
  aux <- tryCatch(
    # Specifying expression
    expr = {
      survival::coxph(formula = survival::Surv(time,event) ~ .,
                      data = d[,1:h,drop = FALSE],
                      ties = "efron",
                      singular.ok = TRUE,
                      robust = TRUE,
                      nocenter = rep(1, ncol(d[,1:h,drop = FALSE])),
                      model = TRUE, x = TRUE)
    },
    # Specifying error message
    error = function(e){
      message(e$message)
      # invisible(gc())
      return(NA)
    }
  )

  # keep at least one component
  while(all(is.na(aux)) & h>1){
    h <- h-1
    aux <- tryCatch(
      # Specifying expression
      expr = {
        survival::coxph(formula = survival::Surv(time,event) ~ .,
                        data = d[,1:h,drop = FALSE],
                        ties = "efron",
                        singular.ok = TRUE,
                        robust = TRUE,
                        nocenter = rep(1, ncol(d[,1:h,drop = FALSE])),
                        model = TRUE, x = TRUE)
      },
      # Specifying error message
      error = function(e){
        if(verbose){
          message(e$message)
        }
        # invisible(gc())
        return(NA)
      }
    )
  }

  # RETURN a MODEL with ALL significant Variables from complete, deleting one by one
  removed_variables <- NULL
  removed_variables_cor <- NULL
  # REMOVE NA-PVAL or INF VARIABLES
  # p_val could be NA for some variables (if NA change to P-VAL=1)
  # DO IT ALWAYS, we do not want problems in COX models
  if(all(c("time", "event") %in% colnames(d))){
    lst_model <- removeNAorINFcoxmodel(model = aux, data = d, time.value = NULL, event.value = NULL)
  }else{
    lst_model <- removeNAorINFcoxmodel(model = aux, data = cbind(d, Yh), time.value = NULL, event.value = NULL)
  }
  aux <- lst_model$model
  removed_variables_cor <- c(removed_variables_cor, lst_model$removed_variables)

  #RETURN a MODEL with ALL significant Variables from complete, deleting one by one in backward method
  if(remove_non_significant){
    if(all(c("time", "event") %in% colnames(d))){
      lst_rnsc <- removeNonSignificativeCox(cox = aux, alpha = alpha, cox_input = d, time.value = NULL, event.value = NULL)
    }else{
      lst_rnsc <- removeNonSignificativeCox(cox = aux, alpha = alpha, cox_input = cbind(d, Yh), time.value = NULL, event.value = NULL)
    }

    aux <- lst_rnsc$cox
    removed_variables <- lst_rnsc$removed_variables
  }

  cox_model <- NULL
  cox_model$fit <- aux

  #if we cannot compute all components
  if(h != n.comp & !all(is.na(cox_model$fit))){
    if(verbose){
      message(paste0("Model cannot be computed for all components. Final model select ", h," components instead of ", n.comp,"."))
    }
    #update all values
    W <- W[,1:h,drop = FALSE]
    W_norm = W_norm[,1:h,drop = FALSE]
    P = P[,1:h,drop = FALSE]
    Ts = Ts[,1:h,drop = FALSE]
    E = E[1:h]
    n.comp = ncol(Ts)
    var_by_component = var_by_component[1:h]
  }

  #or if we filter some components
  if(h != length(names(cox_model$fit$coefficients))){
    if(verbose){
      message(paste0("Updating matrices Final model select ", length(names(cox_model$fit$coefficients))," components instead of ", n.comp,"."))
    }

    #update all values
    W <- W[,names(cox_model$fit$coefficients),drop = FALSE]
    W_norm = W_norm[,names(cox_model$fit$coefficients),drop = FALSE]
    P = P[,names(cox_model$fit$coefficients),drop = FALSE]
    Ts = Ts[,names(cox_model$fit$coefficients),drop = FALSE]

    which_to_keep <- which(colnames(W) %in% names(cox_model$fit$coefficients))

    E = E[which_to_keep]
    n.comp = which_to_keep
  }

  survival_model = NULL
  if(!length(cox_model$fit) == 1){
    survival_model <- getInfoCoxModel(cox_model$fit)
  }

  if(is.null(P) | is.null(W)){
    message(paste0(pkg.env$splsicox, " model cannot be computed because P or W vectors are NULL. Returning NA."))
    # invisible(gc())
    return(NA)
  }

  #W.star
  #sometimes solve(t(P) %*% W)
  #system is computationally singular: reciprocal condition number = 6.24697e-18
  # PW <- tryCatch(expr = {solve(t(P) %*% W, tol = tol)},
  #                error = function(e){
  #                  if(verbose){
  #                    message(e$message)
  #                  }
  #                  NA
  #               })
  PW <- tryCatch(expr = {MASS::ginv(t(P) %*% W)},
                 error = function(e){
                   if(verbose){
                     message(e$message)
                   }
                   NA
                 })

  if(all(is.na(PW))){
    message(paste0(pkg.env$splsicox, " model cannot be computed due to ginv(t(P) %*% W). Multicollineality could be present in your data. Returning NA."))
    # invisible(gc())
    return(NA)
  }

  # What happen when you cannot compute W.star but you have P and W?
  W.star <- W %*% PW
  # In this case, the way to compute the SCORES is by using the W_norm matrix
  # cannot work with W PW
  # W.star <- W_norm

  rownames(Ts) <- rownames(X)
  colnames(W.star) <- colnames(W)
  #rownames(P) <- rownames(W_norm) <- rownames(W) <-  rownames(W.star) <- colnames(Xh)

  # if(stopped){
  #   colnames(Ts) <- colnames(P) <- colnames(W_norm) <- colnames(W) <-  colnames(W.star) <- paste0("comp_", 1:h)
  # }if(length(n.comp)>0){
  #   colnames(Ts) <- colnames(P) <- colnames(W_norm) <- colnames(W) <-  colnames(W.star) <- paste0("comp_", n.comp)
  # }else{
  #   colnames(Ts) <- colnames(P) <- colnames(W_norm) <- colnames(W) <-  colnames(W.star) <- paste0("comp_", 1:n.comp)
  # }

  func_call <- match.call()

  if(!returnData){
    survival_model <- removeInfoSurvivalModel(survival_model)
  }

  t2 <- Sys.time()
  time <- difftime(t2,t1,units = "mins")

  # invisible(gc())
  return(splsicox_class(list(X = list("data" = if(returnData) X_norm else NA,
                                      "weightings" = W,
                                      "weightings_norm" = W_norm, #important for predictions
                                      "W.star" = W.star,
                                      "loadings" = P,
                                      "scores" = Ts,
                                      "E" = if(returnData) E else NA,
                                      "x.mean" = xmeans, "x.sd" = xsds),
                             Y = list("data" = Yh,
                                      "y.mean" = ymeans, "y.sd" = ysds),
                             survival_model = survival_model,
                             n.comp = h,
                            penalty = penalty,
                            var_by_component = var_by_component, #variables selected for each component
                            call = if(returnData) func_call else NA,
                            X_input = if(returnData) X_original else NA,
                            Y_input = if(returnData) Y_original else NA,
                            alpha = alpha,
                            nsv = removed_variables,
                            nzv = variablesDeleted,
                            nz_coeffvar = variablesDeleted_cvar,
                            class = pkg.env$splsicox,
                            time = time)))
}

#### ### ### ### ###
# CROSS-EVALUATION #
#### ### ### ### ###

#' sPLS-ICOX Cross-Validation
#' @description This function performs cross-validated sparse partial least squares Cox (sPLS-ICOX).
#' The function returns the optimal number of components and the optimal sparsity penalty value based
#' on cross-validation. The performance could be based on multiple metrics as Area Under the Curve
#' (AUC), I. Brier Score or C-Index. Furthermore, the user could establish more than one metric
#' simultaneously.
#'
#' @details
#' The `sPLS-ICOX Cross-Validation` function offers a systematic approach to determine the optimal
#' hyperparameters for the sparse partial least squares Cox (sPLS-ICOX) model through cross-validation.
#' This function aims to identify the best combination of the number of PLS components (`max.ncomp`)
#' and the sparsity penalty (`penalty.list`) by evaluating model performance across multiple
#' metrics such as Area Under the Curve (AUC), I. Brier Score, and C-Index.
#'
#' Cross-validation is executed through a series of runs (`n_run`) and folds (`k_folds`), ensuring a
#' robust assessment of model performance. The function provides flexibility in defining the
#' evaluation criteria, allowing users to set weights for different metrics (`w_AIC`, `w_C.Index`,
#' `w_AUC`, `w_I.BRIER`) and to specify the desired evaluation method (`pred.method`).
#'
#' An essential feature of this function is its ability to halt the evaluation process based on
#' predefined conditions. If the improvement in AUC across successive models does not surpass the
#' `MIN_AUC_INCREASE` threshold or if the desired AUC (`MIN_AUC`) is achieved, the evaluation can be
#' terminated early, optimizing computational efficiency.
#'
#' The function also incorporates various data preprocessing options, emphasizing the importance of
#' data quality in model performance. For instance, near-zero and zero variance variables can be
#' removed either globally or at the fold level. Additionally, the function can handle multicore
#' processing (`PARALLEL` option) to expedite the cross-validation process.
#'
#' Upon completion, the function returns a comprehensive output, including detailed information about
#' the best model, performance metrics at various levels (fold, run, component), and optionally, all
#' cross-validated models.
#'
#' @param X Numeric matrix or data.frame. Explanatory variables. Qualitative variables must be transform
#' into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and event
#' observations.
#' @param max.ncomp Numeric. Maximum number of PLS components to compute for the cross validation
#' (default: 8).
#' @param penalty.list Numeric vector. Penalty for variable selection for the individual cox models.
#' Variables with a lower P-Value than 1 - "penalty" in the individual cox analysis will be keep
#' for the sPLS-ICOX approach (default: seq(0.1,0.9,0.2)).
#' @param n_run Numeric. Number of runs for cross validation (default: 3).
#' @param k_folds Numeric. Number of folds for cross validation (default: 10).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_variance_at_fold_level Logical. If remove_variance_at_fold_level = TRUE, (near) zero
#' variance will be removed at fold level. Not recommended. (default: FALSE).
#' @param remove_non_significant_models Logical. If remove_non_significant_models = TRUE,
#' non-significant models are removed before computing the evaluation. A non-significant model is a
#' model with at least one component/variable with a P-Value higher than the alpha cutoff.
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).
#' @param w_C.Index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).
#' @param w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).
#' @param w_I.BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (default: 0).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the minimum is
#' reached, the evaluation could stop if the improvement does not reach an AUC higher than adding the
#' 'MIN_AUC_INCREASE' value (default: 0.8).
#' @param MIN_COMP_TO_CHECK Numeric. Number of penalties/components to evaluate to check if the AUC
#' improves. If for the next 'MIN_COMP_TO_CHECK' the AUC is not better and the 'MIN_AUC' is meet, the
#' evaluation could stop (default: 3).
#' @param pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
#' "mean" or "median" (default: "mean").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated
#' simultaneously. If fast_mode = FALSE, for each run, all linear predictors are computed for test
#' observations. Once all have their linear predictors, the evaluation is perform across all the
#' observations together (default: FALSE).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param return_models Logical. Return all models computed in cross validation (default: FALSE).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
#' total cores - 1 will be used. It could lead to higher RAM consumption (default: FALSE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#' @param seed Number. Seed value for performing runs/folds divisions (default: 123).
#'
#' @return Instance of class "Coxmos" and model "cv.sPLS-ICOX".
#'
#' \code{best_model_info}: A data.frame with the information for the best model.
#'
#' \code{df_results_folds}: A data.frame with fold-level information.
#'
#' \code{df_results_runs}: A data.frame with run-level information.
#'
#' \code{df_results_comps}: A data.frame with component-level information (for cv.coxEN, EN.alpha
#' information).
#'
#' \code{lst_models}: If return_models = TRUE, return a the list of all cross-validated models.
#'
#' \code{pred.method}: AUC evaluation algorithm method for evaluate the model performance.
#'
#' \code{opt.comp}: Optimal component selected by the best_model.
#'
#' \code{opt.penalty}: Optimal penalty value selected by the best_model.
#'
#' \code{plot_AIC}: AIC plot by each hyper-parameter.
#'
#' \code{plot_C.Index}: C-Index plot by each hyper-parameter.
#'
#' \code{plot_I.BRIER}: Integrative Brier Score plot by each hyper-parameter.
#'
#' \code{plot_AUC}: AUC plot by each hyper-parameter.
#'
#' \code{class}: Cross-Validated model class.
#'
#' \code{lst_train_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for train the models.
#'
#' \code{lst_test_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for test the models.
#'
#' \code{time}: time consumed for running the cross-validated function.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @export
#'
#' @examples
#' data("X_proteomic")
#' data("Y_proteomic")
#' set.seed(123)
#' index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
#' X_train <- X_proteomic[index_train,1:50]
#' Y_train <- Y_proteomic[index_train,]
#' cv.splsicox_model <- cv.splsicox(X_train, Y_train, max.ncomp = 2, penalty.list = c(0.1),
#' n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)

cv.splsicox <- function (X, Y,
                        max.ncomp = 8, penalty.list = seq(0,0.9,0.1),
                        n_run = 3, k_folds = 10,
                        x.center = TRUE, x.scale = FALSE,
                        remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
                        remove_variance_at_fold_level = FALSE,
                        remove_non_significant_models = FALSE, remove_non_significant = FALSE, alpha = 0.05,
                        w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL,
                        max_time_points = 15,
                        MIN_AUC_INCREASE = 0.05, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3,
                        pred.attr = "mean", pred.method = "cenROC", fast_mode = FALSE,
                        MIN_EPV = 5, return_models = FALSE, returnData = FALSE,
                        PARALLEL = FALSE, verbose = FALSE, seed = 123){

  # tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
  tol = 1e-10

  t1 <- Sys.time()
  y.center = y.scale = FALSE
  FREQ_CUT <- 95/5

  #### ### ###
  # WARNINGS #
  #### ### ###

  #### Check evaluator installed:
  checkLibraryEvaluator(pred.method)

  #### Check values classes and ranges
  params_with_limits <- list("penalty.list" = penalty.list)
  check_min0_less1_variables(params_with_limits)

  params_with_limits <- list("MIN_AUC_INCREASE" = MIN_AUC_INCREASE, "MIN_AUC" = MIN_AUC, "alpha" = alpha,
                 "w_AIC" = w_AIC, "w_C.Index" = w_C.Index, "w_AUC" = w_AUC, "w_I.BRIER" = w_I.BRIER)
  check_min0_max1_variables(params_with_limits)

  numeric_params <- list("max.ncomp" = max.ncomp,
                  "n_run" = n_run, "k_folds" = k_folds, "max_time_points" = max_time_points,
                  "MIN_COMP_TO_CHECK" = MIN_COMP_TO_CHECK, "MIN_EPV" = MIN_EPV, "seed" = seed, "tol" = tol)
  check_class(numeric_params, class = "numeric")

  logical_params <- list("x.center" = x.center, "x.scale" = x.scale,
                         #"y.center" = y.center, "y.scale" = y.scale,
                      "remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
                      "remove_variance_at_fold_level" = remove_variance_at_fold_level,
                      "remove_non_significant_models" = remove_non_significant_models,
                      "remove_non_significant" = remove_non_significant,
                      "return_models" = return_models,"returnData" = returnData, "verbose" = verbose, "PARALLEL" = PARALLEL)
  check_class(logical_params, class = "logical")

  character_params <- list("pred.attr" = pred.attr, "pred.method" = pred.method)
  check_class(character_params, class = "character")

  #### FIX possible SEQ() problems
  penalty.list <- as.character(penalty.list)
  penalty.list <- as.numeric(penalty.list)

  #### Check cv-folds
  lst_checkFR <- checkFoldRuns(Y, n_run, k_folds, fast_mode)
  n_run <- lst_checkFR$n_run
  fast_mode <- lst_checkFR$fast_mode

  #### Check rownames
  lst_check <- checkXY.rownames(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  #### Illegal chars in colnames
  X <- checkColnamesIllegalChars(X)

  #### REQUIREMENTS
  checkX.colnames(X)
  checkY.colnames(Y)
  lst_check <- checkXY.class(X, Y, verbose = verbose)
  X <- lst_check$X
  Y <- lst_check$Y

  check.cv.weights(c(w_AIC, w_C.Index, w_I.BRIER, w_AUC))
  # if(!pred.method %in% c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I")){
  #   stop_quietly(paste0("pred.method must be one of the following: ", paste0(c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I"), collapse = ", ")))
  # }
  if(!pred.method %in% pkg.env$AUC_evaluators){
    stop_quietly(paste0("pred.method must be one of the following: ", paste0(pkg.env$AUC_evaluators, collapse = ", ")))
  }

  #### MAX PREDICTORS
  max.ncomp <- check.ncomp(X, max.ncomp)
  max.ncomp <- check.maxPredictors(X, Y, MIN_EPV, max.ncomp)
  if(MIN_COMP_TO_CHECK >= max.ncomp){
    MIN_COMP_TO_CHECK = max(max.ncomp-1, 1)
  }

  #### REQUIREMENTS
  if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
    lst_dnz <- deleteZeroOrNearZeroVariance(X = X,
                                            remove_near_zero_variance = remove_near_zero_variance,
                                            remove_zero_variance = remove_zero_variance,
                                            toKeep.zv = toKeep.zv,
                                            freqCut = FREQ_CUT)
    X <- lst_dnz$X
    variablesDeleted <- lst_dnz$variablesDeleted
  }else{
    variablesDeleted <- NULL
  }

  #### COEF VARIATION
  if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
    lst_dnzc <- deleteNearZeroCoefficientOfVariation(X = X)
    X <- lst_dnzc$X
    variablesDeleted_cvar <- lst_dnzc$variablesDeleted
  }else{
    variablesDeleted_cvar <- NULL
  }

  #### #
  # CV #
  #### #
  # lst_data <- splitData_Iterations_Folds(X, Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
  # lst_X_train <- lst_data$lst_X_train
  # lst_Y_train <- lst_data$lst_Y_train
  # lst_X_test <- lst_data$lst_X_test
  # lst_Y_test <- lst_data$lst_Y_test
  # k_folds <- lst_data$k_folds
  #
  # lst_train_indexes <- lst_data$lst_train_index
  # lst_test_indexes <- lst_data$lst_test_index

  lst_data <- splitData_Iterations_Folds_indexes(Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST

  lst_train_indexes <- lst_data$lst_train_index
  lst_test_indexes <- lst_data$lst_test_index

  #### ### ### ###
  # TRAIN MODELS #
  #### ### ### ###

  total_models <- 1 * k_folds * n_run * length(penalty.list) #with greatest component we have all of them
  t1 <- Sys.time()
  #we use penalty.list as penalty parameter (sPLS-DRCOX and sPLS-ICOX)
  lst_model <- get_Coxmos_models2.0(method = pkg.env$splsicox,
                                   X_train = X, Y_train = Y,
                                   lst_X_train = lst_train_indexes, lst_Y_train = lst_train_indexes,
                                   max.ncomp = max.ncomp, penalty.list = penalty.list, EN.alpha.list = NULL, max.variables = NULL, vector = NULL,
                                   n_run = n_run, k_folds = k_folds,
                                   MIN_NVAR = NULL, MAX_NVAR = NULL, MIN_AUC_INCREASE = NULL, EVAL_METHOD = NULL,
                                   n.cut_points = NULL,
                                   x.center = x.center, x.scale = x.scale,
                                   y.center = y.center, y.scale = y.scale,
                                   remove_near_zero_variance = remove_variance_at_fold_level, remove_zero_variance = FALSE, toKeep.zv = NULL,
                                   alpha = alpha, MIN_EPV = MIN_EPV,
                                   remove_non_significant = remove_non_significant, tol = tol, max.iter = NULL,
                                   returnData = returnData, total_models = total_models,
                                   PARALLEL = PARALLEL, verbose = verbose)

  comp_model_lst = lst_model$comp_model_lst
  info = lst_model$info

  t2 <- Sys.time()
  t2-t1
  if(all(is.null(comp_model_lst))){
    message(paste0("Best model could NOT be obtained. All models computed present problems. Try to remove variance at fold level. If problem persists, try to delete manually some problematic variables."))

    t2 <- Sys.time()
    time <- difftime(t2,t1,units = "mins")
    if(return_models){
      return(cv.splsicox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, nzv = variablesDeleted, class = pkg.env$cv.splsicox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }else{
      return(cv.splsicox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.comp = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, nzv = variablesDeleted, class = pkg.env$cv.splsicox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }
  }

  #### ### ### ### ### ### #
  # BEST MODEL FOR CV DATA #
  #### ### ### ### ### ### #
  total_models <- max.ncomp * k_folds * n_run * length(penalty.list)
  df_results_evals <- get_COX_evaluation_AIC_CINDEX(comp_model_lst = comp_model_lst, alpha = alpha,
                                                    max.ncomp = max.ncomp, penalty.list = penalty.list, n_run = n_run, k_folds = k_folds,
                                                    total_models = total_models, remove_non_significant_models = remove_non_significant_models, verbose = verbose)

  if(all(is.null(df_results_evals))){
    message(paste0("Best model could NOT be obtained. All models computed present problems."))

    t2 <- Sys.time()
    time <- difftime(t2,t1,units = "mins")
    if(return_models){
      return(cv.splsicox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = NULL, opt.penalty = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsicox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }else{
      return(cv.splsicox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.comp = NULL, opt.penalty = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.splsicox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
    }
  }

  #### ### ### ### ### ### #
  # EVALUATING BRIER SCORE #
  #### ### ### ### ### ### #
  df_results_evals_comp <- NULL
  df_results_evals_run <- NULL
  df_results_evals_fold <- NULL
  optimal_comp_index <- NULL
  optimal_comp_flag <- FALSE
  optimal_eta_index <- NULL
  optimal_eta <- NULL

  if(TRUE){ #compute always BRIER SCORE
    #calculate time vector if still NULL
    if(is.null(times)){
      times <- getTimesVector(Y, max_time_points = max_time_points)
    }

    #As we are measuring just one evaluator and one method - PARALLEL = FALSE
    lst_df <- get_COX_evaluation_BRIER_sPLS(comp_model_lst = comp_model_lst,
                                            fast_mode = fast_mode,
                                            X_test = X, Y_test = Y,
                                            lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
                                            df_results_evals = df_results_evals, times = times,
                                            pred.method = pred.method, pred.attr = pred.attr,
                                            max.ncomp = max.ncomp, penalty.list = penalty.list, n_run = n_run, k_folds = k_folds,
                                            MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
                                            w_I.BRIER = w_I.BRIER, method.train = pkg.env$splsicox, PARALLEL = FALSE, verbose = verbose)

    df_results_evals_comp <- lst_df$df_results_evals_comp
    df_results_evals_run <- lst_df$df_results_evals_run
    df_results_evals_fold <- lst_df$df_results_evals_fold
  }

  #### ### ### ### #
  # EVALUATING AUC #
  #### ### ### ### #

  if(w_AUC!=0){
    total_models <- ifelse(!fast_mode, n_run * max.ncomp * length(penalty.list), k_folds * n_run * max.ncomp * length(penalty.list))
    #total_models <- ifelse(!fast_mode, n_run * max.ncomp, k_folds * n_run * max.ncomp)#inside get_COX_evaluation_AUC

    #times should be the same for all folds
    #calculate time vector if still NULL
    if(is.null(times)){
      times <- getTimesVector(Y, max_time_points = max_time_points)
    }

    #As we are measuring just one evaluator and one method - PARALLEL = FALSE
    lst_df <- get_COX_evaluation_AUC_sPLS(comp_model_lst = comp_model_lst,
                                          X_test = X, Y_test = Y,
                                          lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
                                          df_results_evals = df_results_evals, times = times,
                                          fast_mode = fast_mode, pred.method = pred.method, pred.attr = pred.attr,
                                          max.ncomp = max.ncomp, penalty.list = penalty.list, n_run = n_run, k_folds = k_folds,
                                          MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
                                          w_AUC = w_AUC, method.train = pkg.env$splsicox, PARALLEL = FALSE, verbose = verbose)

    if(is.null(df_results_evals_comp)){
      df_results_evals_comp <- lst_df$df_results_evals_comp
    }else{
      df_results_evals_comp$AUC <- lst_df$df_results_evals_comp$AUC
    }

    if(is.null(df_results_evals_run)){
      df_results_evals_run <- lst_df$df_results_evals_run
    }else{
      df_results_evals_run$AUC <- lst_df$df_results_evals_run$AUC
    }

    if(is.null(df_results_evals_fold)){
      df_results_evals_fold <- lst_df$df_results_evals_fold
    }else{
      df_results_evals_fold$AUC <- lst_df$df_results_evals_fold$AUC
    }

    optimal_comp_index <- lst_df$optimal_comp_index
    optimal_comp_flag <- lst_df$optimal_comp_flag
    optimal_eta <- lst_df$optimal_eta
    optimal_eta_index <- lst_df$optimal_eta_index
  }

  #### ### ### #
  # BEST MODEL #
  #### ### ### #
  df_results_evals_comp <- cv.getScoreFromWeight(lst_cox_mean = df_results_evals_comp, w_AIC, w_C.Index, w_I.BRIER, w_AUC,
                                                 colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS")

  if(optimal_comp_flag){
    best_model_info <- df_results_evals_comp[optimal_comp_index,, drop = FALSE][1,]
    best_model_info <- as.data.frame(best_model_info)
  }else{
    best_model_info <- df_results_evals_comp[which(df_results_evals_comp[,"score"] == max(df_results_evals_comp[,"score"], na.rm = TRUE)),, drop = FALSE][1,]
    best_model_info <- as.data.frame(best_model_info)
  }

  #### ###
  # PLOTS #
  #### ###
  class = pkg.env$splsicox
  lst_EVAL_PLOTS <- get_EVAL_PLOTS(fast_mode = fast_mode, best_model_info = best_model_info, w_AUC = w_AUC, w_I.BRIER = w_I.BRIER, max.ncomp = max.ncomp, penalty.list = penalty.list,
                                   df_results_evals_fold = df_results_evals_fold, df_results_evals_run = df_results_evals_run, df_results_evals_comp = df_results_evals_comp,
                                   colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS", x.text = "Component",
                                   class = class)

  df_results_evals_comp <- lst_EVAL_PLOTS$df_results_evals_comp

  ggp_AUC <- lst_EVAL_PLOTS$ggp_AUC
  ggp_IBS <- lst_EVAL_PLOTS$ggp_IBS
  ggp_C.Index <- lst_EVAL_PLOTS$ggp_C.Index
  ggp_AIC <- lst_EVAL_PLOTS$ggp_AIC

  #### ### #
  # RETURN #
  #### ### #

  df_results_evals$penalty <- as.numeric(as.character(df_results_evals$penalty))
  df_results_evals_run$penalty <- as.numeric(as.character(df_results_evals_run$penalty))
  df_results_evals_comp$penalty <- as.numeric(as.character(df_results_evals_comp$penalty))

  message(paste0("Best model obtained."))

  #### ### ### ### ##
  # Change penalty name #
  #### ### ### ### ##
  colnames(best_model_info)[which(colnames(best_model_info)=="penalty")] <- "penalty"
  colnames(df_results_evals)[which(colnames(df_results_evals)=="penalty")] <- "penalty"
  colnames(df_results_evals_run)[which(colnames(df_results_evals_run)=="penalty")] <- "penalty"
  colnames(df_results_evals_comp)[which(colnames(df_results_evals_comp)=="penalty")] <- "penalty"
  ggp_AUC <- ggp_AUC + guides(color=guide_legend(title="penalty"))
  ggp_IBS <- ggp_IBS + guides(color=guide_legend(title="penalty"))
  ggp_C.Index <- ggp_C.Index + guides(color=guide_legend(title="penalty"))
  ggp_AIC <- ggp_AIC + guides(color=guide_legend(title="penalty"))

  t2 <- Sys.time()
  time <- difftime(t2,t1,units = "mins")

  # invisible(gc())
  if(return_models){
    return(cv.splsicox_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.penalty = best_model_info$penalty, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.splsicox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
  }else{
    return(cv.splsicox_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = NULL, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.penalty = best_model_info$penalty, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.splsicox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
  }

}

### ## ##
# CLASS #
### ## ##

splsicox_class = function(pls_model, ...) {
  model = structure(pls_model, class = pkg.env$model_class,
                    model = pkg.env$splsicox)
  return(model)
}

cv.splsicox_class = function(pls_model, ...) {
  model = structure(pls_model, class = pkg.env$model_class,
                    model = pkg.env$cv.splsicox)
  return(model)
}

Try the Coxmos package in your browser

Any scripts or data that you put into this service are public.

Coxmos documentation built on April 4, 2025, 12:20 a.m.