Nothing
################################
#### Wood's bimodal distribution on the sphere
#### Tsagris Michail 1/2016
#### mtsagris@yahoo.gr
#### References: Andrew T.A. Wood (1982), JRSSC, 31(1): 52-58
#### A bimodal distribution on the sphere
################################
dwood <- function(y, param, logden = FALSE) {
## y is a two column matrix, where the first column is the latitude and
## the second is the longitude, all expressed in degrees
y <- as.matrix(y)
if ( dim(y)[2] == 1 ) y <- t(y)
y[, 1] <- 90 - y[, 1] ## we want the co-latitude
y <- y / 180 * pi
siny1 <- sin( y[, 1] )
x <- cbind( siny1 * cos(y[, 2]), siny1 * sin(y[, 2]), cos(y[, 1]) )
#############
param[1:4] <- param[1:4] / 180 * pi
gam <- param[1] ; del <- param[2] ; a <- param[3]
b <- param[4] ; k <- param[5]
m1 <- c( cos(gam) * cos(del), cos(gam) * sin(del), - sin(gam) )
m2 <- c( - sin(del), cos(del), 0 )
m3 <- c( sin(gam) * cos(del), sin(gam) * sin(del), cos(gam) )
a1 <- as.vector( x %*% m1 )
a2 <- as.vector( x %*% m2 )
a3 <- as.vector( x %*% m3 )
u <- sum(a3)
down <- sqrt( 1 - a3^2 )
v <- ( a1^2 - a2^2 ) / down
w <- 2 * a1 * a2 / down
den <- - log(2 * pi) - log( ( exp(k) - exp(-k) ) / k ) +
k * ( a3 * cos(a) + ( v * cos(b) + w * sin(b) ) * sin(a) )
if ( !logden ) den <- exp(den)
den
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.