R/f.rbing.R

Defines functions f.rbing

Documented in f.rbing

################################
#### Simulating from a Bingham distribution
#### Tsagris Michail 02/2014
#### mtsagris@yahoo.gr
#### References: A new method to simulate the Bingham and related distributions
#### in directional data analysis with applications
#### Kent J.T., Ganeiber A.M. and Mardia K.V. (2013)
#### http://arxiv.org/pdf/1310.8110v1.pdf
#### and
#### Exact Bayesian Inference for the Bingham Distribution
#### C.J. Fallaize and T. Kypraios (2014)
#### http://arxiv.org/pdf/1401.2894v1.pdf
################################
######### Christopher Fallaize and Theodore Kypraios' code (modified)
f.rbing <- function(n, lam, fast = FALSE) {
  ## n is the sample size
  ## lam are the q - 1 non zero eigenvalues
  lam <- sort(lam, decreasing = TRUE)  ## sort the eigenvalues in desceding order

  if ( !fast ){
    nsamp <- 0
    X <- NULL
    lam.full <- c(lam, 0)
    qa <- length(lam.full)
    mu <- numeric(qa)
    sigacginv <- 1 + 2 * lam.full
    SigACG <- sqrt( 1 / ( 1 + 2 * lam.full ) )
    Ntry <- 0

    while (nsamp < n) {
      x.samp <- FALSE
      while ( !x.samp ) {
        yp <- rnorm(qa, mu, SigACG)
        y <- yp / sqrt( sum(yp^2) )
        lratio <-  - sum( y^2 * lam.full ) - qa/2 * log(qa) + 0.5 * (qa - 1) + qa/2 * log( sum(y^2 * sigacginv ) )

        if ( log(runif(1) ) < lratio) {
          X <- c(X, y)
          x.samp <- TRUE
          nsamp <- nsamp + 1
        }
        Ntry <- Ntry + 1
      }
    }
    X <- matrix(X, byrow = TRUE, ncol = qa)
    ## the X contains the simulated values
    ## the avtry is the estimate of the M in rejection sampling
    ## 1/M is the probability of acceptance
    res <- list(X = X, avtry = Ntry/n)
  } else {
    X <- Rfast::rbing(n, lam)
    res <- list(X = X)
  }
  res
}

Try the Directional package in your browser

Any scripts or data that you put into this service are public.

Directional documentation built on Oct. 30, 2024, 9:15 a.m.