R/kalman_functions.R

Defines functions plotTimeSlice plotWRTDSKalman genmissing populateDailySamp randomSubset cleanUp WRTDSKalman

Documented in cleanUp genmissing plotTimeSlice plotWRTDSKalman populateDailySamp randomSubset WRTDSKalman

#' WRTDS-Kalman
#' 
#' This function uses an autoregressive model to produce more accurate 
#' estimates of concentration and flux
#' 
#' This function takes an existing eList 
#' Including the estimated model (the surfaces object in the eList)
#' And produces the daily WRTDSKalman estimates of concentration and flux
#' These generated estimates are called genConc and genFlux
#'
#' @rdname wrtdsK
#' @export
#' @param eList named list with the INFO, Daily, and Sample dataframes and surfaces matrix
#' @param rho numeric the lag one autocorrelation. Default is 0.9.
#' @param niter number of iterations. Default is 200.
#' @param verbose logical specifying whether or not to display progress message
#' @param seed integer value. Defaults to NA, which will not change the current seed.
#' Setting the seed to any given value can be used to create repeatable output.
#' @examples 
#' eList <- Choptank_eList
#' eList <- WRTDSKalman(eList, niter = 10)
#' summary(eList$Daily)
#' 
#' #All flux values in AnnualResults are expressed as a rate in kg/day
#' AnnualResults <- setupYears(eList$Daily)
#' head(AnnualResults)
WRTDSKalman <- function(eList, rho = 0.90, niter = 200, 
                        seed = NA, verbose = TRUE){
  
  if(!is.egret(eList)){
    stop("Please check eList argument")
  }
  
  # Need these columns to be integers:	
  int_cols <- c("Julian", "Month", "Day", "MonthSeq", "waterYear")	
  int_indexs <- which(names(eList$Daily) %in% int_cols)	
  
  eList$Daily[,int_indexs] <- sapply(eList$Daily[,int_indexs], as.integer)	
  
  if(!"surfaces" %in% names(eList)){	
    eList$surfaces <-  estSurfaces(eList)	
  }

  if(!is.na(seed)){
    set.seed(seed)
  } 
  
  # this part is to set up the array of runs of missing values
  localEList <- cleanUp(eList, seed = seed)
  localDaily <- populateDailySamp(localEList)
  
  if(sum(is.na(localDaily$trueConc)) == 0){
    stop("There are known concentration values for every day in the Daily data frame.")
  }
  
  numDays <- length(localDaily$Date)
  numDaysP <- numDays + 1
  # set up DailyGen which will hold the daily generated flux values for all days and all iterations
  DailyGen <- rep(0, numDays * niter)
  dim(DailyGen) <- c(numDays, niter)
  #   x is a vector of the standardized residuals for each day
  #   most of the elements of x will be NA but those from sampled days will have values
  x <- localDaily$stdResid
  #    xP is x that has been padded with a 0 at the start and a 0 at the end
  #    thus it is a vector that always starts and ends with non-missing values
  xP <- c(0,x,0)
  zz <- rle(is.na(xP))
  #    zz$lengths is a vector of run lengths
  #    zz$values is a vector of the values: TRUE means it is a run of missings, 
  #       FALSE means it is a run of non-missing values
  nRuns <- length(zz$lengths)
  zends <- cumsum(zz$lengths)
  nRunsM <- nRuns - 1
  zstarts <- c(0,zends[1:nRunsM])
  # doGap is the indexs of the runs that are missing values (it is just the even integers)
  doGap <- seq(2,nRunsM,2)
  # numGap is the number of groups of missing values to be filled in
  numGap <- length(doGap)
  # now we are ready to do the iterations to generate the series
  if (verbose) cat("% complete:\n")
  
  printUpdate <- unique(floor(seq(1,niter,niter/100)))  
  
  endOfLine <- seq(10,100,10)
  
  seeds <- sample(1:5000, niter)
  
  for(iter in 1:niter){
    
    if (iter %in% printUpdate & verbose) {
      cat(floor(iter*100/niter),"\t")
      if (floor(iter*100/niter) %in% endOfLine) cat("\n")
    }
    localEList <- cleanUp(eList, seed = seeds[iter])
    # this next step adds a trueConc column to Daily, and it is NA if there is no sample value
    # it also adds the stdResid column to Daily
    localDaily <- populateDailySamp(localEList)
    x <- localDaily$stdResid
    #    xxP is x that has been padded with a 0 at the start and a 0 at the end
    #    thus it is a vector that always starts and ends with non-missing values
    xxP <- c(0,x,0)
    # now we are going to loop through all the gaps that need to be filled in
    for(i in 1:numGap) {
      iGap <- doGap[i]
      startFill <- zstarts[iGap]
      endFill <- zends[iGap]+1
      nFill <- zz$length[iGap]+2
      if(i == 1 | i == numGap) {
        z <- rnorm(nFill - 2)
        xfill <- c(xxP[startFill], z, xxP[endFill])
      } else {
        xfill <- genmissing(xxP[startFill], xxP[endFill], rho, nFill)
      }

      xxP[startFill:endFill]<-xfill}
    # now we need to strip out the padded days
    xResid <- xxP[2:numDaysP]
    xConc <- exp((xResid*localDaily$SE)+localDaily$yHat)
    DailyGen[,iter] <- xConc * localDaily$Q * 86.4
  }
  # now we take means over all the iterations
  GenMean <- rep(NA, numDays)
  Daily <- eList$Daily

  Daily$GenFlux <- rowMeans(DailyGen, na.rm = TRUE)
  Daily$GenConc <- Daily$GenFlux / (Daily$Q * 86.4)
  attr(Daily, "niter") <- niter
  attr(Daily, "rho") <- rho
  
  eList$Daily <- Daily
  
  return(eList)
}

#' cleanUp eList
#' 
#' Takes an eList as the input. If there are duplicated dates in the Sample data frame, 
#' will randomly select one value for that date.  If there are censored values
#' in the data set they will be replaced by random censored values.  If there are no
#' days with duplicate samples and no censored valued then the eList returned by the function will be identical to the eList that is passed to it.
#'
#' This function is run before each iteration of generating a random sequence in the 
#' \code{\link{WRTDSKalman}} function  
#' 
#' @param eList named list with the INFO, Daily, and Sample dataframes and surfaces matrix. 
#' @param seed integer value. Defaults to NA, which will not change the current seed.
#' Setting the seed to any given value can be used to create repeatable output.
#' @export
#' @return eList with duplicated dates in the Sample data frame randomly sampled and censored values are replaced by random values.
#' @examples 
#' eList <- Choptank_eList
#' 
#' eList <- cleanUp(eList)
#' 
cleanUp <- function(eList, seed = NA){

  Sample <- randomSubset(eList$Sample, "Julian", seed = seed)
  eListClean <- as.egret(eList$INFO, eList$Daily, Sample, eList$surfaces)
  eListClean <- makeAugmentedSample(eListClean)
  Sample <- eListClean$Sample
  Sample$Uncen <- 1
  Sample$ConcLow <- Sample$rObserved
  Sample$ConcHigh <- Sample$rObserved
  Sample$ConcAve <- Sample$rObserved
  eListClean <- as.egret(eList$INFO, eList$Daily, Sample, eList$surfaces)
  return(eListClean)
}


#' randomSubset
#' 
#' Calculates a random subset of the data based on repeated values from
#' a specified column. 
#' 
#' @export
#' @param df data frame. Must include a column named by the argument colName.
#' @param colName column name to check for duplicates
#' @param seed integer value. Defaults to NA, which will not change the current seed.
#' Setting the seed to any given value can be used to create repeatable output.
#' @examples 
#' df <- data.frame(Julian = c(1,2,2,3,4,4,4,6),
#'                  y = 1:8)
#' df
#' df_random <- randomSubset(df, "Julian")
#' df_random
randomSubset <- function(df, colName, seed = NA){

  dupIndex <- unique(c(which(duplicated(df[[colName]], fromLast = FALSE)), 
                        which(duplicated(df[[colName]], fromLast = TRUE))))
  
  if(length(dupIndex) == 0){
    return(df)
  }
  
  dupIndex <- dupIndex[order(dupIndex)]

  unique_groups <- unique(df[[colName]][dupIndex])
  
  if(!is.na(seed)){
    set.seed(seed)
  } 
  
  sliceIndex <- rep(NA, length(unique_groups))
  for(i in seq_along(unique_groups)){
    sliceIndex[i] <- sample(which(df[[colName]] == unique_groups[i]), size = 1)
  }

  dfDuplicates <- df[sliceIndex, ] 
  dfNoDuplicates <- df[-dupIndex,]
  
  subDF <- rbind(dfNoDuplicates, dfDuplicates)
  subDF <- subDF[order(subDF[[colName]]),]

  return(subDF)
}

#' Merge concentration to Daily
#' 
#' Used for the WRTDS Kalman set of functions, this function
#' merges the ConcAve into the Daily data frame, renaming
#' it "trueConc", then calculates the "trueFlux", and "stdResid".
#' 
#' @param eList named list with the INFO, Daily, and Sample dataframes
#' and surfaces matrix
#' 
#' @export
#' @examples 
#' eList <- Choptank_eList
#' Daily2 <- populateDailySamp(eList)
#' 
populateDailySamp <- function(eList) {

  localSample <- eList$Sample
  localDaily <- eList$Daily
  
  localSample <- localSample[,c("Julian", "ConcAve")]
  names(localSample) <- c("Julian", "trueConc")
  
  retDaily <- merge(localDaily,
                    localSample, 
                    by = "Julian", all.x = TRUE)
  
  retDaily$trueFlux <- retDaily$trueConc * retDaily$Q * 86.4
  retDaily$stdResid <- (log(retDaily$trueConc)-retDaily$yHat)/retDaily$SE
    
  return(retDaily)
}

 
#' genmissing
#' 
#' Generates a lag one auto-regressive time series, where the first and last
#' values are fixed.  Marginal expected value is zero and variance is one.  
#' Generated values have a normal conditional distribution. 
#' 
#' @author Tim Cohn
#' 
#' @param X1 value before the gap
#' @param XN value after the gap
#' @param rho the lag one autocorrelation
#' @param N the length of the sequence including X1 and XN. It
#' is two more than the gap length
#' @keywords internal
#' @return genmissing numeric vector of length N, conditioned on the
#' first value (X1) and last value (XN) with the specified lag one autocorrelation
#' in the limit (where N is large) the values are normal with mean 0 and variance 1
#' 
genmissing <- function(X1, XN, rho, N){
  # this code was done by Tim Cohn
  # @param X1 the value before the gap
  # @param XN  value after the gap
  # @param rho the lag one autocorrelation
  # @param N  the length of the sequence including X1 and XN 
  # it is two more than the gap length
  C <- t(chol(rho^abs(outer(1:N,1:N, "-"))[c(1,N,2:(N-1)),c(1,N,2:(N-1))]))
  
  (C %*% c(MASS::ginv(C[1:2,1:2]) %*% 
             c(X1, XN), 
           stats::rnorm(N-2)))[c(1,3:N,2)]
}



#' plotWRTDSKalman
#' 
#' Two plots to check the flux estimates using the WRTDS_K vs classic WRTDS.
#' The first is annual flux over time, where the two fluxes are shown in different colors.
#' The second is WRTDS vs WRTDSKalman flux estimates. The graphs can be output
#' either on top of each other, or side by side using the \code{sideBySide} argument.
#' 
#' 
#' @param eList named list with at least the Daily, Sample, and INFO dataframes. This
#' eList must be run through \code{WRTDSKalman}.
#' @param sideBySide logical. If \code{TRUE}, the two plots will be plotted
#' side by side, otherwise, one by one vertically.
#' @param fluxUnit number representing entry in pre-defined fluxUnit class array. \code{\link{printFluxUnitCheatSheet}}
#' @param usgsStyle logical option to use USGS style guidelines. Setting this option
#' to TRUE does NOT guarantee USGS compliance. It will only change automatically
#' generated labels
#' 
#' @export
#' @examples 
#' 
#' eList <- Choptank_eList
#' eList <- WRTDSKalman(eList, niter = 10)
#' plotWRTDSKalman(eList)
#' 
#' plotWRTDSKalman(eList, sideBySide = TRUE)
#' 
plotWRTDSKalman <- function(eList, sideBySide = FALSE,
                            fluxUnit = 9, usgsStyle = FALSE) {

  if(!all((c("GenFlux","GenConc") %in% names(eList$Daily)))){
    stop("This function requires running WRTDSKalman on eList")
  }
  
  if(all(c("paStart","paLong") %in% names(eList$INFO))){
    paLong <- eList$INFO$paLong
    paStart <- eList$INFO$paStart  
  } else {
    paLong <- 12
    paStart <- 10
  } 
    
  AnnualResults <- setupYears(eList$Daily)
  
  if (is.numeric(fluxUnit)){
    fluxUnit <- fluxConst[shortCode=fluxUnit][[1]]    
  } else if (is.character(fluxUnit)){
    fluxUnit <- fluxConst[fluxUnit][[1]]
  }
  
  if(usgsStyle){
    yLab <- fluxUnit@unitName[[1]]
  } else {
    yLab <- fluxUnit@shortName[[1]]
  }
  yLab <- trimws(yLab, which = "left")
  unitFactorReturn <- fluxUnit@unitFactor

  AnnualResults$Flux <- AnnualResults$Flux * unitFactorReturn
  AnnualResults$GenFlux <- AnnualResults$GenFlux * unitFactorReturn
  
  yMax <- 1.1 * max(AnnualResults$Flux, AnnualResults$GenFlux)
  nYears <- length(AnnualResults[,1])
  # first a plot of just the WRTDS estimate
  xMin <- floor(AnnualResults$DecYear[1])
  xMax <- ceiling(AnnualResults$DecYear[nYears])
  xlim <- c(xMin,xMax)
  if(sideBySide){
    title1 <- "Annual Flux Estimates: WRTDS in red, WRTDS-K in green"
    title2 <- "Comparison of the two flux estimates"
    mainTitle <- paste(eList$INFO$shortName,eList$INFO$paramShortName,"\n",
                       setSeasonLabelByUser(paStartInput = paStart, paLongInput = paLong))
    par(mfrow=c(1,2), oma=c(0,0,2,0))
    xlab <- paste0("WRTDS annual flux, in ", yLab)
    ylab <- paste0("WRTDSKalman annual flux, in ", yLab)
  } else {
    title1 <- paste(eList$INFO$shortName,eList$INFO$paramShortName,
                    "\nAnnual Flux Estimates: WRTDS in red, WRTDS-K in green\n",
                    setSeasonLabelByUser(paStartInput = paStart, paLongInput = paLong), sep="  ")
    title2 <- paste(eList$INFO$shortName,eList$INFO$paramShortName,
                    "\nComparison of the two flux estimates\n",
                    setSeasonLabelByUser(paStartInput = paStart, paLongInput = paLong),sep="  ")
    xlab <- paste0("WRTDS estimate of annual flux, in ", yLab)
    ylab <- paste0("WRTDSKalman estimate of annual flux, in ", yLab)
  }

  genericEGRETDotPlot(AnnualResults$DecYear, AnnualResults$Flux,
                      plotTitle =  title1, tinyPlot = sideBySide,
                      xlim = xlim, xaxs = "i",
                      ylim = c(0, yMax),  cex.main = 0.9,
                      xlab = "", ylab = paste0("Annual flux, in ", yLab),
                      col = "red", cex = 1.4)
  points(AnnualResults$DecYear, AnnualResults$GenFlux, 
         col = "green", pch = 20, cex = 1.4)
  
  # scatter plot
  genericEGRETDotPlot(AnnualResults$Flux, 
                      AnnualResults$GenFlux, 
                      cex = 1.3, col = "red", 
                      xlim = c(0, yMax), 
                      ylim = c(0, yMax), tinyPlot = sideBySide,
                      xlab = xlab,
                      ylab = ylab, 
                      cex.main = 0.9, 
                      plotTitle = title2)
  abline(a = 0, b = 1)

  if(sideBySide){
    mtext(mainTitle, line = -1, side = 3, outer = TRUE, cex= 1)
    par(mfrow=c(1,1), oma=c(0,0,0,0))
  }
}


#' plotTimeSlice
#' 
#' Plot of either concentration or flux over time showing both the WRTDS and WRTDSKalman estimates.
#' 
#' 
#' 
#' @export
#' @param eList named list with at least the Daily, Sample, and INFO dataframes. This
#' eList must be run through \code{WRTDSKalman}.
#' @param conc logical. If \code{TRUE}, plot concentration, otherwise plot flux.
#' @param start numeric start of DecYear for plot. If \code{NA}, plot will start at the earliest date in the record.
#' @param end numeric end of DecYear for plot. If \code{NA}, plot will end at the latest date in the record.
#' @param usgsStyle logical option to use USGS style guidelines. Setting this option
#' to TRUE does NOT guarantee USGS compliance. It will only change automatically
#' generated labels
#' @param fluxUnit number representing entry in pre-defined fluxUnit class array. \code{\link{printFluxUnitCheatSheet}}
#' @details
#' In the plot title, Ratio of means is mean of WRTDSKalman estimates to the WRTDS Classic estimates.  Ratio only calculated on the data shown in the figure, not the whole series.
#' In the plot, red dots are measured values, blue dots are plotted at the reporting limit for those values that are censored. 
#' @examples 
#' eList <- Choptank_eList
#' eList <- WRTDSKalman(eList, niter = 10)
#' 
#' plotTimeSlice(eList, start = 1990, end = 1991, conc = TRUE)
#' 
#' plotTimeSlice(eList, start = 1990, end = 1991, conc = FALSE)
#' 
#' plotTimeSlice(eList, start = NA, end = 1991, conc = FALSE)
#' 
plotTimeSlice <- function(eList, start = NA, end = NA, conc = TRUE, 
                          fluxUnit = 3, usgsStyle = FALSE){
  

  if(!all((c("GenFlux","GenConc") %in% names(eList$Daily)))){
    stop("This function requires running WRTDSKalman on eList")
  }
  
  eList <- makeAugmentedSample(eList)
  
  Daily <- eList$Daily
  Sample <- eList$Sample
  
  if(!is.na(start)){
    Daily <- Daily[Daily$DecYear >= start,]
    
    Sample <- Sample[Sample$DecYear >= start,]    
  } else {
    start <- min(c(Daily$DecYear, Sample$DecYear))
  }
  
  if(!is.na(end)){
    Daily <- Daily[Daily$DecYear <= end,]
    
    Sample <- Sample[Sample$DecYear <= end,]    
  } else {
    end <- max(c(Daily$DecYear, Sample$DecYear))
  }


 # figure out which data symbol to use, red for uncensored, brown for censored
  Sample$color <- ifelse(Sample$Uncen == 1, "red", "cyan4")

  # first concentration, then flux
  name <- paste(eList$INFO$shortName, eList$INFO$paramShortName)

  possibleGoodUnits <- c("mg/l","mg/l as N", "mg/l as NO2", "mg/L",
                         "mg/l as NO3","mg/l as P","mg/l as PO3","mg/l as PO4","mg/l as CaCO3",
                         "mg/l as Na","mg/l as H","mg/l as S","mg/l NH4" )
  
  allCaps <- toupper(possibleGoodUnits)
  localUnits <- toupper(eList$INFO$param.units)
  
  if(!(localUnits %in% allCaps)){
    warning("Expected concentration units are mg/l, \nThe INFO dataframe indicates:",eList$INFO$param.units,
            "\nFlux calculations will be wrong if units are not consistent")
  }
  
  if(conc){
    ratio <- mean(Daily$GenConc) / mean(Daily$ConcDay)
    fratio <- format(ratio, digits = 2)
    
    y1 <- Daily$ConcDay
    y2 <- Daily$GenConc
    y3 <- Sample$rObserved

    plotTitle <- paste(name,"\nConcentrations, Black is WRTDS, Green is WRTDSKalman\nData in red, (rl in blue if <), Ratio of means is", fratio)
    
  } else {

    if (is.numeric(fluxUnit)){
      fluxUnit <- fluxConst[shortCode=fluxUnit][[1]]    
    } else if (is.character(fluxUnit)){
      fluxUnit <- fluxConst[fluxUnit][[1]]
    }

    fluxFactor <- fluxUnit@unitFactor
    
    ratio <- mean(Daily$GenFlux) / mean(Daily$FluxDay)
    fratio <- format(ratio, digits = 2)
    
    y1 <- Daily$FluxDay * fluxFactor
    y2 <- Daily$GenFlux * fluxFactor
    y3 <- Sample$rObserved * Sample$Q * fluxFactor *86.40

    yLab <- ifelse(usgsStyle,fluxUnit@unitUSGS,fluxUnit@unitExpress)
    
    plotTitle <- paste(name,"\nFlux, Black is WRTDS, Green is WRTDSKalman\nData in red, (rl in blue if <), Ratio of means is", fratio)
  }

  high_y <- max(y1, y2, y3, na.rm = TRUE)
  low_y <- min(y1, y2, y3, na.rm = TRUE)
  
  yInfo <- generalAxis(x = y1, 
                       minVal = low_y, 
                       maxVal = high_y, padPercent = 10,
                       units = eList$INFO$param.units,
                       logScale = TRUE, concentration = conc)

  genericEGRETDotPlot(Daily$DecYear,
                      y1, log = "y", type = "l", 
                      xlim = c(start, end),
                      ylim = c(yInfo$bottom,yInfo$top),
                      yTicks = yInfo$ticks, 
                      xlab = "", cex.main = 0.9,
                      ylab = ifelse(conc, yInfo$label, yLab),
                      plotTitle = plotTitle)
  lines(Daily$DecYear, y2,
        col = "green")
  points(Sample$DecYear, y3, 
         pch = 20, cex = 1.1, col = Sample$color)

}

Try the EGRET package in your browser

Any scripts or data that you put into this service are public.

EGRET documentation built on April 18, 2023, 5:09 p.m.