Nothing
enparCensored <-
function (x, censored, censoring.side = "left", correct.se = TRUE,
restricted = FALSE, left.censored.min = "Censoring Level",
right.censored.max = "Censoring Level",
ci = FALSE, ci.method = "normal.approx", ci.type = "two-sided", conf.level = 0.95,
pivot.statistic = "t", ci.sample.size = "Total", n.bootstraps = 1000, seed = NULL,
warn = FALSE)
{
if (!is.vector(x, mode = "numeric"))
stop("'x' must be a numeric vector")
if (!is.vector(censored, mode = "numeric") & !is.vector(censored,
mode = "logical"))
stop("'censored' must be a logical or numeric vector")
if (length(x) == 0)
stop("'x' has length 0")
if (length(censored) != length(x))
stop("'censored' must be the same length as 'x'")
data.name <- deparse(substitute(x))
censoring.name <- deparse(substitute(censored))
if ((bad.obs <- sum(!(ok <- is.finite(x) & is.finite(as.numeric(censored))))) >
0) {
x <- x[ok]
censored <- censored[ok]
if(warn) {
warning(paste(bad.obs,
"observations with NA/NaN/Inf in 'x' and 'censored' removed."))
}
}
if (length(x) == 0)
stop("'x' has length 0 after omiting observations with NA/NaN/Inf")
if (any(x <= 0))
stop("All values of 'x' must be positive")
if (is.numeric(censored)) {
if (!all(censored == 0 | censored == 1)) {
stop(paste("When 'censored' is a numeric vector, all values of",
"'censored' must be 0 (not censored) or 1 (censored)."))
}
censored <- as.logical(censored)
}
n.cen <- sum(censored)
if (n.cen == 0)
stop("No censored values indicated by 'censored'. Use the function enpar()")
x.no.cen <- x[!censored]
if (length(unique(x.no.cen)) < 2)
stop("'x' must contain at least 2 non-missing, uncensored, distinct values.")
if (!is.logical(correct.se) || length(correct.se) != 1)
stop("'correct.se' must be a logical scalar")
if (!is.logical(restricted) || length(restricted) != 1)
stop("'restricted' must be a logical scalar")
N <- length(x)
censoring.side <- match.arg(censoring.side, c("left", "right"))
x.cen <- x[censored]
cen.levels <- sort(unique(x.cen))
ci.method <- match.arg(ci.method, c("normal.approx", "bootstrap"))
ci.type <- match.arg(ci.type, c("two-sided", "lower", "upper"))
pivot.statistic <- match.arg(pivot.statistic, c("z", "t"))
ci.sample.size <- match.arg(ci.sample.size, c("Total", "Uncensored"))
param.ci.list <- NULL
method <- NULL
if (restricted) {
if (censoring.side == "left") {
min.cen.level <- min(cen.levels)
if (min.cen.level <= min(x.no.cen)) {
if (length(left.censored.min) != 1 ||
(!is.character(left.censored.min) &
!is.numeric(left.censored.min))) {
stop(paste("The argument 'left.censored.min' must have length 1",
"and be a character string or a numeric scalar."))
}
if (is.character(left.censored.min)) {
if (left.censored.min != "Censoring Level")
stop(paste("When the argument 'left.censored.min' is a",
"character string, it must equal 'Censoring Level'"))
}
else {
if (left.censored.min > min.cen.level || left.censored.min <= 0)
stop(paste("When 'left.censored.min' is a numeric scalar",
"it must be less than or equal to the smallest",
"censoring level and greater than 0"))
}
method <- "Kaplan-Meier (Restricted Mean)"
method <- paste(method, "\n", space(33),
"Smallest censored value(s)", "\n", space(33),
paste(" set to", left.censored.min),
sep = "")
index.which.cen.and.eq.min.cen.level <-
which(censored & (x == min.cen.level))
if(sum(censored[-index.which.cen.and.eq.min.cen.level]) == 0) {
if(warn) {
warning(paste("No censored observations left after applying",
"the argument left.censored.min, so enpar() called."))
}
param.ci.list <- enpar(x, ci = ci, ci.method = ci.method,
ci.type = ci.type, conf.level = conf.level,
pivot.statistic = pivot.statistic, n.bootstraps = n.bootstraps,
seed = seed)
}
else {
if (is.numeric(left.censored.min)) {
x[index.which.cen.and.eq.min.cen.level] <- left.censored.min
}
censored[index.which.cen.and.eq.min.cen.level] <- FALSE
}
}
}
else {
max.cen.level <- max(cen.levels)
if (max.cen.level >= max(x.no.cen)) {
if (length(right.censored.max) != 1 ||
(!is.character(right.censored.max) &
!is.numeric(right.censored.max))) {
stop(paste("The argument 'right.censored.max' must have length 1",
"and be a character string or a numeric scalar."))
}
if (is.character(right.censored.max)) {
if (right.censored.max != "Censoring Level")
stop(paste("When the argument 'right.censored.max' is a",
"character string, it must equal 'Censoring Level'"))
}
else {
if (right.censored.max < max.cen.level)
stop(paste("When 'right.censored.max' is a numeric scalar",
"it must be greater than or equal to the largest",
"censoring level"))
}
method <- "Kaplan-Meier (Restricted Mean)"
method <- paste(method, "\n", space(33),
"Largest censored value(s)", "\n", space(33),
paste(" set to", right.censored.max),
sep = "")
index.which.cen.and.eq.max.cen.level <- which(censored & (x == max.cen.level))
if(sum(censored[-index.which.cen.and.eq.max.cen.level]) == 0) {
if(warn) {
warning(paste("No censored observations left after applying",
"the argument right.censored.max, so enpar() called."))
}
param.ci.list <- enpar(x, ci = ci, ci.method = ci.method,
ci.type = ci.type, conf.level = conf.level,
pivot.statistic = pivot.statistic, n.bootstraps = n.bootstraps,
seed = seed)
}
else {
if (is.numeric(right.censored.max)) {
x[index.which.cen.and.eq.max.cen.level] <- right.censored.max
}
censored[index.which.cen.and.eq.max.cen.level] <- FALSE
}
}
}
}
if(is.null(param.ci.list)) {
if(is.null(method)) {
method <- "Kaplan-Meier"
}
if (correct.se) {
method <- paste(method, "\n", space(33), "(Bias-corrected se.mean)",
sep = "")
}
if (!ci || ci.method != "bootstrap") {
param.ci.list <- enparCensored.km(x = x, censored = censored,
censoring.side = censoring.side, correct.se = correct.se,
ci = ci, ci.type = ci.type, conf.level = conf.level,
pivot.statistic = pivot.statistic, ci.sample.size = ci.sample.size)
}
else {
param.ci.list <- enparCensored.km(x = x, censored = censored,
censoring.side = censoring.side, correct.se = correct.se,
ci = FALSE)
ci.list <- enparCensored.bootstrap.ci(x = x, censored = censored,
censoring.side = censoring.side, correct.se = correct.se,
est.fcn = "enparCensored.km", ci.type = ci.type,
conf.level = conf.level, n.bootstraps = n.bootstraps,
obs.mean = param.ci.list$parameters["mean"],
obs.se.mean = param.ci.list$parameters["se.mean"], seed = seed)
param.ci.list <- c(param.ci.list, list(ci.obj = ci.list))
}
}
ret.list <- list(distribution = "None", sample.size = N,
censoring.side = censoring.side, censoring.levels = cen.levels,
percent.censored = (100 * n.cen)/N, parameters = param.ci.list$parameters,
n.param.est = 2, method = method, data.name = data.name,
censoring.name = censoring.name, bad.obs = bad.obs)
if (ci) {
ret.list <- c(ret.list, list(interval = param.ci.list$ci.obj))
if (!is.null(param.ci.list$var.cov.params))
ret.list <- c(ret.list, list(var.cov.params = param.ci.list$var.cov.params))
}
oldClass(ret.list) <- "estimateCensored"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.