Nothing
plotPredIntNparSimultaneousDesign <-
function (x.var = "n", y.var = "conf.level", range.x.var = NULL,
n = max(25, lpl.rank + n.plus.one.minus.upl.rank + 1), n.median = 1,
k = 1, m = ifelse(x.var == "k", ceiling(max.x), 1), r = 2,
rule = "k.of.m", conf.level = 0.95, pi.type = "upper", lpl.rank = ifelse(pi.type ==
"upper", 0, 1), n.plus.one.minus.upl.rank = ifelse(pi.type ==
"lower", 0, 1), n.max = 5000, maxiter = 1000, integrate.args.list = NULL,
plot.it = TRUE, add = FALSE, n.points = 100, plot.col = "black",
plot.lwd = 3 * par("cex"), plot.lty = 1, digits = .Options$digits,
cex.main = par("cex"), ..., main = NULL, xlab = NULL, ylab = NULL,
type = "l")
{
x.var <- match.arg(x.var, c("n", "conf.level", "k", "m",
"r"))
y.var <- match.arg(y.var, c("conf.level", "n"))
rule <- match.arg(rule, c("k.of.m", "CA", "Modified.CA"))
if (x.var == y.var)
stop("'x.var' and 'y.var' cannot denote the same quantity")
if (x.var == "k" && y.var == "n")
stop(paste("The combination of x.var=\"k\" and", "y.var=\"n\" is currently not allowed"))
if (rule != "k.of.m" && x.var == "k")
stop(paste("When rule=\"", rule, "\" you cannot set x.var=\"k\"",
sep = ""))
if (rule == "Modified.CA" && x.var == "m")
stop("When rule=\"Modified.CA\" you cannot set x.var=\"m\"")
if (missing(range.x.var)) {
range.x.var <- switch(x.var, n = c(ifelse(pi.type ==
"lower", lpl.rank + 1, n.plus.one.minus.upl.rank +
1), 50), conf.level = c(0.5, 0.99), k = c(1, 20),
m = c(1, 20), r = c(1, 20))
}
else {
if (is.null(range.x.var) || !all(is.finite(range.x.var)) ||
!is.vector(range.x.var, mode = "numeric") || length(range.x.var) !=
2)
stop(paste("'range.x.var' must be a numeric vector of length 2",
"with no missing (NA), infinite(-Inf, Inf), or undefined(NaN) values"))
}
min.x <- range.x.var[1]
max.x <- range.x.var[2]
if (min.x >= max.x)
stop("The second element of 'range.x.var' must be larger than the first")
if (!is.vector(n.points, mode = "numeric") || length(n.points) !=
1 || n.points != trunc(n.points) || n.points < 2)
stop("'n.points' must be an integer larger than 1")
switch(x.var, n = {
if (min.x < 2 || min.x != trunc(min.x)) stop(paste("When x.var=\"n\" the first element of",
"range.x.var must be an integer greater than 1"))
if (max.x != trunc(max.x)) stop(paste("When x.var=\"n\" the second element of",
"range.x.var must be an integer greater than", "the first element of range.x.var"))
}, conf.level = {
if (min.x < .Machine$double.eps || min.x > 1 - .Machine$double.eps) stop(paste("When x.var=\"conf.level\" the first element of range.x.var",
"must be a positive number between 0 and 1"))
if (max.x > 1 - .Machine$double.eps) stop(paste("When x.var=\"conf.level\" the second element of",
"range.x.var must be an positive number between 0 and 1",
"and greater than the first element of range.x.var"))
}, k = {
if (min.x < 1 || min.x != trunc(min.x)) stop(paste("When x.var=\"k\" the first element of",
"range.x.var must be an integer greater than 0"))
if (max.x != trunc(max.x)) stop(paste("When x.var=\"k\" the second element of",
"range.x.var must be an integer greater than", "the first element of range.x.var"))
}, m = {
if (min.x < 1 || min.x != trunc(min.x)) stop(paste("When x.var=\"m\" the first element of",
"range.x.var must be an integer greater than 0"))
if (max.x != trunc(max.x)) stop(paste("When x.var=\"m\" the second element of",
"range.x.var must be an integer greater than", "the first element of range.x.var"))
}, r = {
if (min.x < 1 || min.x != trunc(min.x)) stop(paste("When x.var=\"r\" the first element of",
"range.x.var must be an integer greater than 0"))
if (max.x != trunc(max.x)) stop(paste("When x.var=\"r\" the second element of",
"range.x.var must be an integer greater than", "the first element of range.x.var"))
})
if (!is.vector(n.max, mode = "numeric") || length(n.max) !=
1 || !is.finite(n.max) || n.max != trunc(n.max) || n.max <
2)
stop("'n.max' must be a positive integer greater than 1")
if (!is.vector(maxiter, mode = "numeric") || length(maxiter) !=
1 || !is.finite(maxiter) || maxiter != trunc(maxiter) ||
maxiter < 2)
stop("'maxiter' must be a positive integer greater than 1")
pi.type <- match.arg(pi.type, c("upper", "lower"))
if (pi.type == "upper")
lpl.rank <- 0
else n.plus.one.minus.upl.rank <- 0
if (length(lpl.rank) != 1 || !is.vector(lpl.rank, mode = "numeric") ||
!is.finite(lpl.rank) || lpl.rank != trunc(lpl.rank) ||
lpl.rank < 0 || lpl.rank >= n.max)
stop("'lpl.rank' must be a non-negative integer less than 'n.max'")
if (pi.type == "lower" & lpl.rank < 1)
stop("When pi.type='lower', 'lpl.rank' must be a positive integer")
if (length(n.plus.one.minus.upl.rank) != 1 || !is.vector(n.plus.one.minus.upl.rank,
mode = "numeric") || !is.finite(n.plus.one.minus.upl.rank) ||
n.plus.one.minus.upl.rank != trunc(n.plus.one.minus.upl.rank) ||
n.plus.one.minus.upl.rank < 0 || n.plus.one.minus.upl.rank >=
n.max)
stop("'n.plus.one.minus.upl.rank' must be a non-negative integer less than 'n.max'")
if (pi.type == "upper" & n.plus.one.minus.upl.rank < 1)
stop(paste("When pi.type='two.sided' or pi.type='upper',",
"'n.plus.one.minus.upl.rank' must be a positive integer"))
if (x.var != "n" && y.var != "n") {
if (is.null(n) || !is.finite(n) || !is.vector(n, mode = "numeric") ||
length(n) != 1 || n < 2 || n != trunc(n))
stop("'n' must be an integer greater than 1")
if (pi.type == "lower" && lpl.rank >= n)
stop("When pi.type='lower', 'lpl.rank' must be less than 'n'")
if (pi.type == "upper" && n.plus.one.minus.upl.rank >=
n)
stop("When pi.type='lower', 'n.plus.one.minus.upl.rank' must be less than 'n'")
}
if (is.null(n.median) || !is.finite(n.median) || !is.vector(n.median,
mode = "numeric") || length(n.median) != 1 || n.median <
1 || n.median != trunc(n.median) || !is.odd(n.median))
stop("'n.median' must be a positive odd integer")
if (x.var != "conf.level" && y.var != "conf.level") {
if (is.null(conf.level) || !is.finite(conf.level) ||
!is.vector(conf.level, mode = "numeric") || length(conf.level) !=
1 || conf.level <= .Machine$double.eps || conf.level >=
1 - .Machine$double.eps) {
stop("'conf.level' must be a scalar between 0 and 1")
}
}
if (x.var != "m") {
if (is.null(m) || !is.finite(m) || !is.vector(m, mode = "numeric") ||
length(m) != 1 || m < 1 || m != trunc(m))
stop("'m' must be a positive integer")
}
if (x.var != "r") {
if (is.null(r) || !is.finite(r) || !is.vector(r, mode = "numeric") ||
length(r) != 1 || r < 1 || r != trunc(r))
stop("'r' must be a positive integer")
}
if (x.var != "k" && rule == "k.of.m") {
if (is.null(k) || !is.finite(k) || !is.vector(k, mode = "numeric") ||
length(k) != 1 || k < 1 || k != trunc(k))
stop("'k' must be a positive integer")
}
if (x.var != "k" && x.var != "m" && rule == "k.of.m" && k >
m)
stop("'k' must be less than or equal to 'm'")
if (x.var == "k" && max.x > m)
stop(paste("When x.var=\"k\" 'max.x' must be", "less than or equal to 'm'"))
if (x.var == "m" && rule == "k.of.m" && min.x < k)
stop(paste("When x.var=\"m\" 'min.x' must be", "greater than or equal to 'k'"))
pi.string <- switch(pi.type, two.sided = "(Two-Sided PI)",
lower = "(One-Sided Lower PI)", upper = "(One-Sided Upper PI)")
n.string <- paste("n =", n)
n.median.string <- ifelse(n.median == 1, "", paste("n.median = ",
n, ", ", sep = ""))
conf.string <- paste("Confidence Level = ", format(100 *
conf.level, digits = digits), "%", sep = "")
k.string <- paste("k =", k)
m.string <- paste("m =", m)
r.string <- paste("r =", r)
rule.string <- switch(rule, k.of.m = "Based on k-of-m Rule",
CA = "Based on California Rule", Modified.CA = "Based on Modified California Rule")
if (x.var != "n" & y.var != "n") {
upl.rank <- n + 1 - n.plus.one.minus.upl.rank
rank.string <- switch(pi.type, lower = paste("Rank(LPL) =",
lpl.rank), upper = paste("Rank(UPL) =", upl.rank))
}
else {
rank.string <- switch(pi.type, lower = paste("Rank(LPL) =",
lpl.rank), upper = paste("Rank(UPL) =", ifelse(n.plus.one.minus.upl.rank ==
1, "n", paste("n -", n.plus.one.minus.upl.rank -
1))))
}
if (plot.it)
gen.gp.list <- checkGraphicsPars(...)$gen.gp.list
combo <- paste(c(x.var, y.var), collapse = " & ")
switch(combo, `n & conf.level` = {
x <- seq(min.x, max.x, by = ceiling((max.x - min.x +
1)/n.points))
if (is.null(xlab)) xlab <- "Sample Size (n)"
y <- predIntNparSimultaneousConfLevel(n = x, n.median = n.median,
k = k, m = m, r = r, rule = rule, lpl.rank = lpl.rank,
n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, integrate.args.list = integrate.args.list)
if (is.null(ylab)) ylab <- "Confidence Level"
line1 <- paste("Confidence Level vs. Sample Size for",
"Nonparametric Simultaneous Prediction Interval")
line2 <- switch(rule, k.of.m = paste(rule.string, " with ",
n.median.string, k.string, ", ", m.string, ", ",
r.string, " ", pi.string, sep = ""), CA = paste(rule.string,
" with ", n.median.string, m.string, ", ", r.string,
" ", pi.string, sep = ""), Modified.CA = paste(rule.string,
" with ", n.median.string, r.string, " ", pi.string,
sep = ""))
line3 <- rank.string
}, `conf.level & n` = {
x <- seq(min.x, max.x, length = n.points)
if (is.null(xlab)) xlab <- "Confidence Level"
y <- predIntNparSimultaneousN(n.median = n.median, k = k,
m = m, r = r, rule = rule, lpl.rank = lpl.rank, n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, conf.level = x, n.max = n.max,
integrate.args.list = integrate.args.list, maxiter = maxiter)
if (is.null(ylab)) ylab <- "Sample Size (n)"
line1 <- paste("Sample Size vs. Confidence Level for",
"Nonparametric Simultaneous Prediction Interval")
line2 <- switch(rule, k.of.m = paste(rule.string, " with ",
n.median.string, k.string, ", ", m.string, ", ",
r.string, " ", pi.string, sep = ""), CA = paste(rule.string,
" with ", n.median.string, m.string, ", ", r.string,
" ", pi.string, sep = ""), Modified.CA = paste(rule.string,
" with ", n.median.string, r.string, " ", pi.string,
sep = ""))
line3 <- rank.string
}, `k & conf.level` = {
x <- seq(min.x, max.x, by = ceiling((max.x - min.x +
1)/n.points))
if (is.null(xlab)) xlab <- "Min # Future Obs PI Should Contain (k)"
y <- predIntNparSimultaneousConfLevel(n = n, n.median = n.median,
k = x, m = m, r = r, rule = rule, lpl.rank = lpl.rank,
n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, integrate.args.list = integrate.args.list)
if (is.null(ylab)) ylab <- "Confidence Level"
line1 <- paste("Confidence Level vs. Min # Future Obs for",
"Nonparametric Simultaneous Prediction Interval")
line2 <- paste(rule.string, " with ", n.string, ", ",
n.median.string, , m.string, ", ", r.string, " ",
pi.string, sep = "")
line3 <- rank.string
}, `m & conf.level` = {
x <- seq(min.x, max.x, by = ceiling((max.x - min.x +
1)/n.points))
if (is.null(xlab)) xlab <- "# Future Obs (m)"
y <- predIntNparSimultaneousConfLevel(n = n, n.median = n.median,
k = k, m = x, r = r, rule = rule, lpl.rank = lpl.rank,
n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, integrate.args.list = integrate.args.list)
if (is.null(ylab)) ylab <- "Confidence Level"
line1 <- paste("Confidence Level vs. # Future Obs for",
"Nonparametric Simultaneous Prediction Interval")
line2 <- paste(rule.string, " with ", n.string, ", ",
n.median.string, , k.string, ", ", r.string, " ",
pi.string, sep = "")
line3 <- rank.string
}, `m & n` = {
x <- seq(min.x, max.x, by = ceiling((max.x - min.x +
1)/n.points))
if (is.null(xlab)) xlab <- "# Future Obs (m)"
y <- predIntNparSimultaneousN(n.median = n.median, k = k,
m = x, r = r, rule = rule, lpl.rank = lpl.rank, n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, conf.level = conf.level, n.max = n.max,
integrate.args.list = integrate.args.list, maxiter = maxiter)
if (is.null(ylab)) ylab <- "Sample Size (n)"
line1 <- paste("Sample Size vs. # Future Obs for", "Nonparametric Simultaneous Prediction Interval")
line2 <- paste(rule.string, " with ", n.median.string,
k.string, ", ", r.string, ", ", conf.string, " ",
pi.string, sep = "")
line3 <- rank.string
}, `r & conf.level` = {
x <- seq(min.x, max.x, by = ceiling((max.x - min.x +
1)/n.points))
if (is.null(xlab)) xlab <- "# Future Sampling Occasions (r)"
y <- predIntNparSimultaneousConfLevel(n = n, n.median = n.median,
k = k, m = m, r = x, rule = rule, lpl.rank = lpl.rank,
n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, integrate.args.list = integrate.args.list)
if (is.null(ylab)) ylab <- "Confidence Level"
line1 <- paste("Confidence Level vs. # Future Sampling Occasions for",
"Nonparametric Simultaneous Prediction Interval")
line2 <- paste(rule.string, " with ", n.string, ", ",
n.median.string, , k.string, ", ", m.string, " ",
pi.string, sep = "")
line3 <- rank.string
}, `r & n` = {
x <- seq(min.x, max.x, by = ceiling((max.x - min.x +
1)/n.points))
if (is.null(xlab)) xlab <- "# Future Sampling Occasions (r)"
y <- predIntNparSimultaneousN(n.median = n.median, k = k,
m = m, r = x, rule = rule, lpl.rank = lpl.rank, n.plus.one.minus.upl.rank = n.plus.one.minus.upl.rank,
pi.type = pi.type, conf.level = conf.level, n.max = n.max,
integrate.args.list = integrate.args.list, maxiter = maxiter)
if (is.null(ylab)) ylab <- "Sample Size (n)"
line1 <- paste("Sample Size vs. # Future Sampling Occasions for",
"Nonparametric Simultaneous Prediction Interval")
line2 <- paste(rule.string, " with ", n.median.string,
k.string, ", ", m.string, ", ", conf.string, " ",
pi.string, sep = "")
line3 <- rank.string
})
if (plot.it) {
if (!add) {
plot(x, y, type = "n", main = "", sub = "", ...,
xlab = xlab, ylab = ylab)
if (is.null(main)) {
mtext(text = line1, side = 3, line = 3, cex = cex.main)
mtext(text = line2, side = 3, line = 2, cex = cex.main)
mtext(text = line3, side = 3, line = 1, cex = cex.main)
}
else {
arg.list <- c(list(main = main), gen.gp.list,
list(cex = cex.main))
do.call("title", arg.list)
}
arg.list <- c(list(x = x, y = y), gen.gp.list, list(type = type,
col = plot.col, lwd = plot.lwd, lty = plot.lty))
do.call("lines", arg.list)
}
else {
arg.list <- c(list(x = x, y = y), gen.gp.list, list(type = type,
col = plot.col, lwd = plot.lwd, lty = plot.lty))
do.call("lines", arg.list)
}
}
ret.list <- list(x, y)
names(ret.list) <- c(x.var, y.var)
invisible(ret.list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.