Nothing
predIntNorm <-
function (x, n.mean = 1, k = 1, method = "Bonferroni", pi.type = "two-sided",
conf.level = 0.95)
{
if (!is.vector(k, mode = "numeric") || length(k) != 1 ||
k != trunc(k) || k < 1 || !is.vector(n.mean, mode = "numeric") ||
length(n.mean) != 1 || n.mean != trunc(n.mean) || n.mean <
1)
stop("'k' and 'n.mean' must be positive integers")
method <- match.arg(method, c("Bonferroni", "exact"))
pi.type <- match.arg(pi.type, c("two-sided", "lower", "upper"))
if (!is.vector(conf.level, mode = "numeric") || length(conf.level) !=
1 || conf.level <= 0 || conf.level >= 1)
stop("'conf.level' must be a scalar greater than 0 and less than 1.")
if (x.is.est.obj <- data.class(x) == "estimate" || data.class(x) ==
"estimateCensored") {
if (x$distribution != "Normal")
stop(paste("'predIntNorm' creates prediction intervals",
"for a normal distribution. You have supplied an object",
"that assumes a different distribution."))
class.x <- oldClass(x)
if (!is.null(x$interval)) {
x <- x[-match("interval", names(x))]
oldClass(x) <- class.x
}
xbar <- x$parameters["mean"]
s <- x$parameters["sd"]
n <- x$sample.size
ret.list <- x
}
else {
if (!is.vector(x, mode = "numeric"))
stop(paste("'x' must be either a list that inherits from",
"the class 'estimate', or else a numeric vector"))
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
n <- length(x)
if (n < 2 || length(unique(x)) < 2)
stop(paste("'x' must contain at least 2 non-missing distinct values. ",
"This is not true for 'x' =", data.name))
ret.list <- enorm(x)
ret.list$data.name <- data.name
ret.list$bad.obs <- bad.obs
xbar <- ret.list$parameters["mean"]
s <- ret.list$parameters["sd"]
}
if (k == 1)
method <- "exact"
df <- n - 1
K <- predIntNormK(n = n, df = df, n.mean = n.mean, k = k,
method = method, pi.type = pi.type, conf.level = conf.level)
switch(pi.type, `two-sided` = {
LPL <- xbar - K * s
UPL <- xbar + K * s
}, lower = {
LPL <- xbar - K * s
UPL <- Inf
}, upper = {
LPL <- -Inf
UPL <- xbar + K * s
})
limits <- c(LPL, UPL)
names(limits) <- c("LPL", "UPL")
pi.obj <- list(name = "Prediction", limits = limits, type = pi.type,
method = method, conf.level = conf.level, sample.size = n,
dof = df, n.mean = n.mean, k = k)
oldClass(pi.obj) <- "intervalEstimate"
ret.list <- c(ret.list, list(interval = pi.obj))
if (x.is.est.obj)
oldClass(ret.list) <- class.x
else oldClass(ret.list) <- "estimate"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.