Nothing
predIntNormSimultaneous <-
function (x, n.mean = 1, k = 1, m = 2, r = 1, rule = "k.of.m",
delta.over.sigma = 0, pi.type = "upper", conf.level = 0.95,
K.tol = .Machine$double.eps^0.5)
{
rule <- match.arg(rule, c("k.of.m", "CA", "Modified.CA"))
pi.type <- match.arg(pi.type, c("upper", "lower", "two-sided"))
if (pi.type == "two-sided") {
stop(paste(
"Two-sided simultaneous prediction intervals are not currently available.\n",
"NOTE: Two-sided simultaneous prediction intervals computed using\n",
"Versions 2.4.0 - 2.8.1 of EnvStats are *NOT* valid."
))
}
switch(rule, k.of.m = {
if (!is.vector(k, mode = "numeric") || length(k) != 1 ||
k != trunc(k) || k < 1 || !is.vector(n.mean, mode = "numeric") ||
length(n.mean) != 1 || n.mean != trunc(n.mean) ||
n.mean < 1 || !is.vector(m, mode = "numeric") ||
length(m) != 1 || m != trunc(m) || m < 1 || !is.vector(r,
mode = "numeric") || length(r) != 1 || r != trunc(r) ||
r < 1 || k > m) stop(paste("'k', 'n.mean', 'm', and 'r' must be positive integers,",
"and 'k' must be between 1 and 'm'"))
}, CA = {
if (!is.vector(n.mean, mode = "numeric") || length(n.mean) !=
1 || n.mean != trunc(n.mean) || n.mean < 1 || !is.vector(m,
mode = "numeric") || length(m) != 1 || m != trunc(m) ||
m < 1 || !is.vector(r, mode = "numeric") || length(r) !=
1 || r != trunc(r) || r < 1) stop("'n.mean', 'm', and 'r' must be positive integers")
}, Modified.CA = {
if (!is.vector(n.mean, mode = "numeric") || length(n.mean) !=
1 || n.mean != trunc(n.mean) || n.mean < 1 || !is.vector(m,
mode = "numeric") || length(m) != 1 || m != trunc(m) ||
m < 1 || !is.vector(r, mode = "numeric") || length(r) !=
1 || r != trunc(r) || r < 1) stop("'n.mean', 'm', and 'r' must be positive integers")
m <- 4
})
if (!is.vector(delta.over.sigma, mode = "numeric") || length(delta.over.sigma) !=
1 || !is.finite(delta.over.sigma))
stop("'delta.over.sigma' must be a finite numeric scalar.")
if (!is.vector(conf.level, mode = "numeric") || length(conf.level) !=
1 || conf.level <= 0 || conf.level >= 1)
stop("'conf.level' must be a scalar greater than 0 and less than 1.")
if (x.is.est.obj <- data.class(x) == "estimate" || data.class(x) ==
"estimateCensored") {
if (x$distribution != "Normal")
stop(paste("'predIntNormSimultaneous' creates prediction intervals",
"for a normal distribution. You have supplied an object",
"that assumes a different distribution."))
class.x <- oldClass(x)
if (!is.null(x$interval)) {
x <- x[-match("interval", names(x))]
oldClass(x) <- class.x
}
xbar <- x$parameters["mean"]
s <- x$parameters["sd"]
n <- x$sample.size
ret.list <- x
}
else {
if (!is.vector(x, mode = "numeric"))
stop(paste("'x' must be either a list that inherits from",
"the class 'estimate', or else a numeric vector"))
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
n <- length(x)
if (n < 2 || length(unique(x)) < 2)
stop(paste("'x' must contain at least 2 non-missing distinct values. ",
"This is not true for 'x' =", data.name))
ret.list <- enorm(x)
ret.list$data.name <- data.name
ret.list$bad.obs <- bad.obs
xbar <- ret.list$parameters["mean"]
s <- ret.list$parameters["sd"]
}
df <- n - 1
K <- predIntNormSimultaneousK(n = n, df = df, n.mean = n.mean,
k = k, m = m, r = r, rule = rule, delta.over.sigma = delta.over.sigma,
pi.type = pi.type, conf.level = conf.level, K.tol = K.tol)
switch(pi.type,
lower = {
LPL <- xbar - K * s
UPL <- Inf
},
upper = {
LPL <- -Inf
UPL <- xbar + K * s
}
)
limits <- c(LPL, UPL)
names(limits) <- c("LPL", "UPL")
string <- ifelse(rule == "k.of.m", "", paste(" (", rule,
" Rule)", sep = ""))
if (rule == "CA")
k <- "First.or.all.of.next.m.minus.one"
else if (rule == "Modified.CA")
k <- "First.or.at.least.two.of.next.three"
pi.obj <- list(name = "Prediction", rule = rule, limits = limits,
type = pi.type,
method = paste("exact", string, sep = ""), conf.level = conf.level,
sample.size = n, dof = df, k = k, m = m, r = r,
delta.over.sigma = delta.over.sigma,
n.mean = n.mean)
oldClass(pi.obj) <- "intervalEstimate"
ret.list <- c(ret.list, list(interval = pi.obj))
if (x.is.est.obj)
oldClass(ret.list) <- class.x
else oldClass(ret.list) <- "estimate"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.