Nothing
chisqcens.default <- function(times, cens = rep(1, length(times)), M,
distr = c("exponential", "gumbel", "weibull", "normal",
"lognormal", "logistic", "loglogistic", "beta"),
betaLimits=c(0, 1), igumb = c(10, 10),
BS = 999, params0 = list(shape = NULL, shape2 = NULL,
location = NULL, scale = NULL),
tol = 1e-04, ...) {
if (!is.numeric(times)) {
stop("Variable times must be numeric!")
}
if (any(times <= 0)) {
stop("Times must be strictly positive!")
}
if (any(!cens %in% 0:1)) {
stop("Status indicator must be either 0 or 1!")
}
if (!is.list(params0)) {
stop("params0 must be a list!")
}
distr <- match.arg(distr)
if (distr == "beta" && any(times < betaLimits[1] | times > betaLimits[2])) {
msg <- paste0("Times must be within limits! Try with 'betaLimits = c(",
pmax(0, min(times) - 1), ", ", ceiling(max(times) + 1), ")'.")
stop(msg)
}
if (!all(sapply(params0, is.null))) {
if (distr == "exponential" && is.null(params0$scale)) {
stop("Argument 'params0' requires a value for the scale parameter.")
}
if (distr %in% c("weibull", "loglogistic") &&
(is.null(params0$shape) || is.null(params0$scale))) {
stop("Argument 'params0' requires values for the shape and scale parameters.")
}
if (distr %in% c("gumbel", "normal", "lognormal", "logistic") &&
(is.null(params0$location) || is.null(params0$scale))) {
stop("Argument 'params0' requires values for the location and scale parameters.")
}
if (distr == "beta" && (is.null(params0$shape) || is.null(params0$shape2))) {
stop("Argument 'params0' requires values for both shape parameters.")
}
}
rnd <- -log(tol, 10)
times <- round(pmax(times, tol), rnd)
dd <- data.frame(left = as.vector(times), right = ifelse(cens == 1, times, NA))
alpha0 <- params0$shape
gamma0 <- params0$shape2
mu0 <- params0$location
beta0 <- params0$scale
alphaML <- gammaML <- muML <- betaML <- NULL
alphaSE <- gammaSE <- muSE <- betaSE <- NULL
aic <- bic <- NULL
censKM <- survfit(Surv(times, 1 - cens) ~ 1)
survKM <- survfit(Surv(times, cens) ~ 1)
n <- length(times)
Morig <- M
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mout <- length(cb) - 1
if (distr == "exponential") {
if (!is.null(beta0)) {
hypo <- c(scale = beta0)
}
paramsML <- survreg(Surv(times, cens) ~ 1, dist = "exponential")
muu <- unname(coefficients(paramsML))
betaML <- 1 / exp(-muu)
betaSE <- sqrt(paramsML$var[1])*exp(muu)
aic <- 2 - 2*paramsML$loglik[1]
bic <- log(length(times)) - 2*paramsML$loglik[1]
expStat <- function(dat) {
if (is.null(beta0)) {
muu <- unname(coefficients(survreg(Surv(dat$times, dat$cens) ~ 1,
dist = "exponential")))
betahat <- 1 / exp(-muu)
} else {
betahat <- beta0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
expProb <- diff(pexp(cb[1:(Mred + 1)], 1 / betahat))
v <- (obsfreq - n * expProb) / sqrt(n * expProb)
tn <- t(v) %*% v
return(tn)
}
expRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rexp(n, mle), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
beta <- ifelse(is.null(beta0), betaML, beta0)
bts <- boot(data.frame(times, cens), expStat, R = BS, sim = "parametric",
ran.gen = expRnd, mle = 1 / beta)
}
if (distr == "gumbel") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- try(suppressMessages(fitdistcens(dd, "gumbel",
start = list(alpha = igumb[1],
scale = igumb[2]))),
silent = TRUE)
if (is(paramsML, "try-error")) {
stop("Function failed to estimate the parameters.\n
Try with other initial values.")
}
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
gumbStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "gumbel", start = list(alpha = muML,
scale = betaML))
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
gumbProb <- diff(pgumbel(cb[1:(M + 1)], muhat, betahat))
gumbProb[1] <- gumbProb[1] + pgumbel(cb[1], muhat, betahat)
v <- (obsfreq - n * gumbProb) / sqrt(n * gumbProb)
tn <- t(v) %*% v
return(tn)
}
gumbRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rgumbel(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), gumbStat, R = BS, sim = "parametric",
ran.gen = gumbRnd, mle = c(mu, beta))
}
if (distr == "weibull") {
if (!is.null(alpha0) && !is.null(beta0)) {
hypo <- c(shape = alpha0, scale = beta0)
}
paramsML <- fitdistcens(dd, "weibull")
alphaML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
alphaSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
weiStat <- function(dat) {
if (is.null(alpha0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "weibull")
alphahat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
alphahat <- alpha0
betahat <- beta0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
weiProb <- diff(pweibull(cb[1:(Mred + 1)], alphahat, betahat))
v <- (obsfreq - n * weiProb) / sqrt(n * weiProb)
tn <- t(v) %*% v
return(tn)
}
weiRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rweibull(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(alpha0) || is.null(beta0)) {
alpha <- alphaML
beta <- betaML
} else {
alpha <- alpha0
beta <- beta0
}
bts <- boot(data.frame(times, cens), weiStat, R = BS, sim = "parametric",
ran.gen = weiRnd, mle = c(alpha, beta))
}
if (distr == "normal") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- fitdistcens(dd, "norm")
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
normStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "norm")
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
normProb <- diff(pnorm(cb[1:(Mred + 1)], muhat, betahat))
normProb[1] <- normProb[1] + pnorm(cb[1], muhat, betahat)
v <- (obsfreq - n * normProb) / sqrt(n * normProb)
tn <- t(v) %*% v
return(tn)
}
normRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rnorm(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), normStat, R = BS, sim = "parametric",
ran.gen = normRnd, mle = c(mu, beta))
}
if (distr == "lognormal") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- fitdistcens(dd, "lnorm")
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
lnormStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "lnorm")
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
lnormProb <- diff(plnorm(cb[1:(Mred + 1)], muhat, betahat))
v <- (obsfreq - n * lnormProb) / sqrt(n * lnormProb)
tn <- t(v) %*% v
return(tn)
}
lnormRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rlnorm(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), lnormStat, R = BS, sim = "parametric",
ran.gen = lnormRnd, mle = c(mu, beta))
}
if (distr == "logistic") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- fitdistcens(dd, "logis")
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
logiStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "logis")
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
logiProb <- diff(plogis(cb[1:(Mred + 1)], muhat, betahat))
logiProb[1] <- logiProb[1] + plogis(cb[1], muhat, betahat)
v <- (obsfreq - n * logiProb) / sqrt(n * logiProb)
tn <- t(v) %*% v
return(tn)
}
logiRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rlogis(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), logiStat, R = BS, sim = "parametric",
ran.gen = logiRnd, mle = c(mu, beta))
}
if (distr == "loglogistic") {
if (!is.null(alpha0) && !is.null(beta0)) {
hypo <- c(shape = alpha0, scale = beta0)
}
paramsML <- survreg(Surv(times, cens) ~ 1, dist = "loglogistic")
alphaML <- 1 / exp(unname(paramsML$icoef)[2])
betaML <- exp(unname(paramsML$icoef)[1])
alphaSE <- sqrt(paramsML$var[4])*exp(-unname(paramsML$icoef)[2])
betaSE <- sqrt(paramsML$var[1])*exp(unname(paramsML$icoef)[1])
aic <- 2*2 - 2*paramsML$loglik[1]
bic <- log(length(times))*2 - 2*paramsML$loglik[1]
llogiStat <- function(dat) {
if (is.null(alpha0) || is.null(beta0)) {
paramsBSML <- unname(survreg(Surv(dat$times, dat$cens) ~ 1,
dist = "loglogistic")$icoef)
alphahat <- 1 / exp(paramsBSML[2])
betahat <- exp(paramsBSML[1])
} else {
alphahat <- alpha0
betahat <- beta0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
llogiProb <- diff(pllogis(cb[1:(Mred + 1)], alphahat, scale = betahat))
v <- (obsfreq - n * llogiProb) / sqrt(n * llogiProb)
tn <- t(v) %*% v
return(tn)
}
llogiRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rllogis(n, mle[1], scale = mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(alpha0) || is.null(beta0)) {
alpha <- alphaML
beta <- betaML
} else {
alpha <- alpha0
beta <- beta0
}
bts <- boot(data.frame(times, cens), llogiStat, R = BS, sim = "parametric",
ran.gen = llogiRnd, mle = c(alpha, beta))
}
if (distr == "beta") {
if (!is.null(alpha0) && !is.null(gamma0)) {
hypo <- c(shape = alpha0, shape2 = gamma0)
}
aBeta <- betaLimits[1]
bBeta <- betaLimits[2]
paramsML <- fitdistcens((dd - aBeta) / (bBeta - aBeta), "beta")
alphaML <- unname(paramsML$estimate[1])
gammaML <- unname(paramsML$estimate[2])
alphaSE <- unname(paramsML$sd[1])
gammaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
betaStat <- function(dat) {
if (is.null(alpha0) || is.null(gamma0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens((dd - aBeta) / (bBeta - aBeta), "beta")
alphahat <- unname(paramsBSML$estimate[1])
gammahat <- unname(paramsBSML$estimate[2])
} else {
alphahat <- alpha0
gammahat <- gamma0
}
survKM <- survfit(Surv(dat$times, dat$cens) ~ 1)
cb <- unique(quantile(survKM, probs = seq(0, 1, 1 / M))$quantile)
if (anyNA(cb)) {
cb <- cb[!is.na(cb)]
}
Mred <- length(cb) - 1
Fhat <- c(seq(0, 1, 1 / M)[1:Mred], 1)
cb[Mred + 1] <- Inf
obsfreq <- n * diff(Fhat)
betaProb <- diff(pbeta(cb[1:(M + 1)] * (bBeta - aBeta) + aBeta, alphahat,
gammahat))
v <- (obsfreq - n * betaProb) / sqrt(n * betaProb)
tn <- t(v) %*% v
return(tn)
}
betaRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rbeta(n, alpha, gamma) * (bBeta - aBeta) + aBeta,
tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(alpha0) || is.null(gamma0)) {
alpha <- alphaML
gamma <- gammaML
} else {
alpha <- alpha0
gamma <- gamma0
}
bts <- boot(data.frame(times, cens), betaStat, R = BS, sim = "parametric",
ran.gen = betaRnd, mle = c(alpha, gamma))
}
tn <- bts$t0
pval <- (sum(bts$t[, 1] > bts$t0[1]) + 1) / (bts$R + 1)
if (all(sapply(params0, is.null))) {
output <- list(Distribution = distr,
Test = c("Statistic" = tn, "p-value" = pval),
Estimates = c(shape = alphaML, shape2 = gammaML,
location = muML, scale = betaML),
StdErrors = c(shapeSE = alphaSE, shape2SE = gammaSE,
locationSE = muSE, scaleSE = betaSE),
Cellnumbers = c("Original" = Morig, "Final" = Mout),
aic = aic, bic = bic,
BS = BS)
} else {
output <- list(Distribution = distr,
Hypothesis = hypo,
Test = c("Statistic" = tn, "p-value" = pval),
Estimates = c(shape = alphaML, shape2 = gammaML,
location = muML, scale = betaML),
StdErrors = c(shapeSE = alphaSE, shape2SE = gammaSE,
locationSE = muSE, scaleSE = betaSE),
Cellnumbers = c("Original" = Morig, "Final" = Mout),
aic = aic, bic = bic,
BS = BS)
}
class(output) <- "chisqcens"
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.