Nothing
gofcens.default <- function(times, cens = rep(1, length(times)),
distr = c("exponential", "gumbel", "weibull", "normal",
"lognormal", "logistic", "loglogistic", "beta"),
betaLimits = c(0, 1), igumb = c(10, 10),
BS = 999, params0 = list(shape = NULL, shape2 = NULL,
location = NULL, scale = NULL),
tol = 1e-04, ...) {
if (!is.numeric(times)) {
stop("Variable times must be numeric!")
}
if (any(times <= 0)) {
stop("Times must be strictly positive!")
}
if (any(!cens %in% 0:1)) {
stop("Status indicator must be either 0 or 1!")
}
if (!is.list(params0)) {
stop("params0 must be a list!")
}
distr <- match.arg(distr)
if (distr == "beta" && any(times < betaLimits[1] | times > betaLimits[2])) {
msg <- paste0("Times must be within limits! Try with 'betaLimits = c(",
pmax(0, min(times) - 1), ", ", ceiling(max(times) + 1), ")'.")
stop(msg)
}
if (!all(sapply(params0, is.null))) {
if (distr == "exponential" && is.null(params0$scale)) {
stop("Argument 'params0' requires a value for the scale parameter.")
}
if (distr %in% c("weibull", "loglogistic") &&
(is.null(params0$shape) || is.null(params0$scale))) {
stop("Argument 'params0' requires values for the shape and scale parameters.")
}
if (distr %in% c("gumbel", "normal", "lognormal", "logistic") &&
(is.null(params0$location) || is.null(params0$scale))) {
stop("Argument 'params0' requires values for the location and scale parameters.")
}
if (distr == "beta" && (is.null(params0$shape) || is.null(params0$shape2))) {
stop("Argument 'params0' requires values for both shape parameters.")
}
}
rnd <- -log(tol, 10)
times <- round(pmax(times, tol), rnd)
n <- length(times)
dd <- data.frame(left = as.vector(times), right = ifelse(cens == 1, times, NA))
alpha0 <- params0$shape
gamma0 <- params0$shape2
mu0 <- params0$location
beta0 <- params0$scale
alphaML <- gammaML <- muML <- betaML <- NULL
alphaSE <- gammaSE <- muSE <- betaSE <- NULL
alphahat <- gammahat <- muhat <- betahat <- NULL
A <- NULL
aic <- bic <- NULL
censKM <- survfit(Surv(times, 1 - cens) ~ 1)
if (distr == "exponential") {
if (!is.null(beta0)) {
hypo <- c(scale = beta0)
}
paramsML <- survreg(Surv(times, cens) ~ 1, dist = "exponential")
muu <- unname(coefficients(paramsML))
betaML <- 1 / exp(-muu)
betaSE <- sqrt(paramsML$var[1])*exp(muu)
aic <- 2 - 2*paramsML$loglik[1]
bic <- log(length(times)) - 2*paramsML$loglik[1]
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - pexp(x, 1/ beta)
}
expStat <- function(dat) {
if (is.null(beta0)) {
muu <- unname(coefficients(survreg(Surv(dat$times, dat$cens) ~ 1,
dist = "exponential")))
betahat <- 1 / exp(-muu)
} else {
betahat <- beta0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- pexp(stimes, 1 / betahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(pexp(stimes, 1 / betahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
A <- max(abs(c(Yl, Y, Ym)))
return(c(AD, CvM, A))
}
expRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rexp(n, mle), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
beta <- ifelse(is.null(beta0), betaML, beta0)
bts <- boot(data.frame(times, cens), expStat, R = BS, sim = "parametric",
ran.gen = expRnd, mle = 1 / beta)
}
if (distr == "gumbel") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- try(suppressMessages(fitdistcens(dd, "gumbel",
start = list(alpha = igumb[1],
scale = igumb[2]))),
silent = TRUE)
if (is(paramsML, "try-error")) {
stop("Function failed to estimate the parameters.\n
Try with other initial values.")
}
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - pgumbel(x, mu, beta)
}
gumbStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "gumbel", start = list(alpha = muML,
scale = betaML))
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- pgumbel(stimes, muhat, betahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(pgumbel(stimes, muhat, betahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
A <- max(abs(c(Yl, Y, Ym)))
return(c(AD, CvM, A))
}
gumbRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rgumbel(n, mle[1], mle[2]),tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), gumbStat, R = BS, sim = "parametric",
ran.gen = gumbRnd, mle = c(mu, beta))
}
if (distr == "weibull") {
if (!is.null(alpha0) && !is.null(beta0)) {
hypo <- c(shape = alpha0, scale = beta0)
}
paramsML <- fitdistcens(dd, "weibull")
alphaML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
alphaSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - pweibull(x, alpha, beta)
}
weiStat <- function(dat) {
if (is.null(alpha0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "weibull")
alphahat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
alphahat <- alpha0
betahat <- beta0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- pweibull(stimes, alphahat, betahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(pweibull(stimes, alphahat, betahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
A <- max(abs(c(Yl, Y, Ym)))
return(c(AD, CvM, A))
}
weiRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rweibull(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(alpha0) || is.null(beta0)) {
alpha <- alphaML
beta <- betaML
} else {
alpha <- alpha0
beta <- beta0
}
bts <- boot(data.frame(times, cens), weiStat, R = BS, sim = "parametric",
ran.gen = weiRnd, mle = c(alpha, beta))
}
if (distr == "normal") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- fitdistcens(dd, "norm")
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - pnorm(x, mu, beta)
}
normStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "norm")
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- pnorm(stimes, muhat, betahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(pnorm(stimes, muhat, betahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
A <- max(abs(c(Yl, Y, Ym)))
return(c(AD, CvM, A))
}
normRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rnorm(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), normStat, R = BS, sim = "parametric",
ran.gen = normRnd, mle = c(mu, beta))
}
if (distr == "lognormal") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- fitdistcens(dd, "lnorm")
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - plnorm(x, mu, beta)
}
lnormStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "lnorm")
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- plnorm(stimes, muhat, betahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(plnorm(stimes, muhat, betahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
A <- max(abs(c(Yl, Y, Ym)))
return(c(AD, CvM, A))
}
lnormRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rlnorm(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), lnormStat, R = BS, sim = "parametric",
ran.gen = lnormRnd, mle = c(mu, beta))
}
if (distr == "logistic") {
if (!is.null(mu0) && !is.null(beta0)) {
hypo <- c(location = mu0, scale = beta0)
}
paramsML <- fitdistcens(dd, "logis")
muML <- unname(paramsML$estimate[1])
betaML <- unname(paramsML$estimate[2])
muSE <- unname(paramsML$sd[1])
betaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - plogis(x, mu, beta)
}
logiStat <- function(dat) {
if (is.null(mu0) || is.null(beta0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens(dd, "logis")
muhat <- unname(paramsBSML$estimate[1])
betahat <- unname(paramsBSML$estimate[2])
} else {
muhat <- mu0
betahat <- beta0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- plogis(stimes, muhat, betahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(plogis(stimes, muhat, betahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
A <- max(abs(c(Yl, Y, Ym)))
return(c(AD, CvM, A))
}
logiRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rlogis(n, mle[1], mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(mu0) || is.null(beta0)) {
mu <- muML
beta <- betaML
} else {
mu <- mu0
beta <- beta0
}
bts <- boot(data.frame(times, cens), logiStat, R = BS, sim = "parametric",
ran.gen = logiRnd, mle = c(mu, beta))
}
if (distr == "loglogistic") {
if (!is.null(alpha0) && !is.null(beta0)) {
hypo <- c(shape = alpha0, scale = beta0)
}
paramsML <- survreg(Surv(times, cens) ~ 1, dist = "loglogistic")
alphaML <- 1 / exp(unname(paramsML$icoef)[2])
betaML <- exp(unname(paramsML$icoef)[1])
alphaSE <- sqrt(paramsML$var[4])*exp(-unname(paramsML$icoef)[2])
betaSE <- sqrt(paramsML$var[1])*exp(unname(paramsML$icoef)[1])
aic <- 2*2 - 2*paramsML$loglik[1]
bic <- log(length(times))*2 - 2*paramsML$loglik[1]
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - pllogis(x, alpha, scale = beta)
}
llogiStat <- function(dat) {
if (is.null(alpha0) || is.null(beta0)) {
paramsBSML <- unname(survreg(Surv(dat$times, dat$cens) ~ 1,
dist = "loglogistic")$icoef)
alphahat <- 1 / exp(paramsBSML[2])
betahat <- exp(paramsBSML[1])
} else {
alphahat <- alpha0
betahat <- beta0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- pllogis(stimes, alphahat, scale = betahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(pllogis(stimes, alphahat, scale = betahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
A <- max(abs(c(Yl, Y, Ym)))
return(c(AD, CvM, A))
}
llogiRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rllogis(n, mle[1], scale = mle[2]), tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(alpha0) || is.null(beta0)) {
alpha <- alphaML
beta <- betaML
} else {
alpha <- alpha0
beta <- beta0
}
bts <- boot(data.frame(times, cens), llogiStat, R = BS, sim = "parametric",
ran.gen = llogiRnd, mle = c(alpha, beta))
}
if (distr == "beta") {
if (!is.null(alpha0) && !is.null(gamma0)) {
hypo <- c(shape = alpha0, shape2 = gamma0)
}
aBeta <- betaLimits[1]
bBeta <- betaLimits[2]
paramsML <- fitdistcens((dd - aBeta) / (bBeta - aBeta), "beta")
alphaML <- unname(paramsML$estimate[1])
gammaML <- unname(paramsML$estimate[2])
alphaSE <- unname(paramsML$sd[1])
gammaSE <- unname(paramsML$sd[2])
aic <- paramsML$aic
bic <- paramsML$bic
SofT0 <- function(x, alpha, gamma, mu, beta) {
1 - pbeta((x - aBeta) / (bBeta - aBeta), alpha, gamma)
}
betaStat <- function(dat) {
if (is.null(alpha0) || is.null(gamma0)) {
dd <- data.frame(left = as.vector(dat$times),
right = ifelse(dat$cens == 1, dat$times, NA))
paramsBSML <- fitdistcens((dd - aBeta) / (bBeta - aBeta), "beta")
alphahat <- unname(paramsBSML$estimate[1])
gammahat <- unname(paramsBSML$estimate[2])
} else {
alphahat <- alpha0
gammahat <- gamma0
}
stimes <- sort(unique(dat$times[dat$cens == 1]))
KM <- summary(survfit(Surv(dat$times, dat$cens) ~ 1))$surv
nc <- length(KM)
Fn <- 1 - KM
y0 <- pbeta((stimes - aBeta) / (bBeta - aBeta), alphahat, gammahat)
AD <- nc * (-1 - log(y0[nc]) - log(1 - y0[nc])+
sum(Fn[-nc]^2 *
(-log(1 - y0[-1]) + log(y0[-1]) + log(1 - y0[-nc]) - log(y0[-nc]))) -
2 * sum(Fn[-nc] * (-log(1 - y0[-1]) + log(1 - y0[-nc]))))
Fn <- c(1 - KM, NA)
y0 <- c(pbeta((stimes - aBeta) / (bBeta - aBeta), alphahat, gammahat), 1)
CvM <- nc * (sum(Fn[-(nc + 1)] * (y0[-1] - y0[-(nc + 1)]) *
(Fn[-(nc + 1)] - (y0[-1] + y0[-(nc + 1)]))) + 1 / 3)
sumSurvT <- survfit(Surv(dat$times, dat$cens) ~ 1, stype = 2, ctype = 2)
survT <- unique(data.frame(times = sumSurvT$time, surv = sumSurvT$surv))
stimes <- survT$time
m <- length(stimes)
svbefor <- c(1, survT$surv[-m])
aux2 <- numeric(m)
for (i in 1:m) {
if (sumSurvT$n.censor[i] > 0) {
aux2[i] <- with(sumSurvT, sum(1 / (n.risk[i] - n.event[i] -
(0:(n.censor[i] - 1)))))
}
}
alfatj <- exp(-c(0, cumsum(aux2))[-m])
Atj <- sqrt(c(1, alfatj[-m])) *
log(SofT0(c(0, stimes[-m]), alphahat, gammahat, muhat, betahat) /
SofT0(stimes, alphahat, gammahat, muhat, betahat))
Atj[is.nan(Atj)] <- 0
Avec <- cumsum(Atj)
Btj <- sqrt(c(1, alfatj[-m])) * log(svbefor / survT$surv)
Btj[is.nan(Btj)] <- 0
Bvec <- cumsum(Btj)
Yl <- sqrt(n) / 2 * (svbefor + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - c(0, Bvec[-m])) * ifelse(Bvec > 0, 1, 0)
Y <- sqrt(n) / 2 * (survT$surv + SofT0(stimes, alphahat, gammahat, muhat, betahat)) *
(Avec - Bvec) * ifelse(Bvec > 0, 1, 0)
Ym <- sqrt(n) / 2 * (survT$surv[m] + SofT0(stimes[m], alphahat, gammahat, muhat,
betahat)) * (Avec[m] - Bvec[m])
return(c(AD, CvM, A))
}
betaRnd <- function(dat, mle) {
out <- dat
n <- nrow(dat)
unifn <- runif(n)
survtimes <- round(pmax(rbeta(n, alpha, gamma) * (bBeta - aBeta) + aBeta,
tol), rnd)
censtimes <- as.vector(quantile(censKM, unifn)$quantile)
censtimes[is.na(censtimes)] <- Inf
out$times <- pmin(survtimes, censtimes)
out$cens <- as.numeric(survtimes < censtimes)
out
}
if (is.null(alpha0) || is.null(gamma0)) {
alpha <- alphaML
gamma <- gammaML
} else {
alpha <- alpha0
gamma <- gamma0
}
bts <- boot(data.frame(times, cens), betaStat, R = BS, sim = "parametric",
ran.gen = betaRnd, mle = c(alpha, gamma))
}
KS <- bts$t0[3]
KSp <- (sum(bts$t[, 3] > bts$t0[3]) + 1) / (bts$R + 1)
CvM <- bts$t0[2]
CvMp <- (sum(bts$t[, 2] > bts$t0[2]) + 1) / (bts$R + 1)
AD <- bts$t0[1]
ADp <- (sum(bts$t[, 1] > bts$t0[1]) + 1) / (bts$R + 1)
if (all(sapply(params0, is.null))) {
output <- list(Distribution = distr,
Test = c(KS = KS, CvM = CvM, AD = AD),
pval = c(KS = KSp, CvM = CvMp, AD = ADp),
Estimates = c(shape = alphaML, shape2 = gammaML,
location = muML, scale = betaML),
StdErrors = c(shapeSE = alphaSE, shape2SE = gammaSE,
locationSE = muSE, scaleSE = betaSE),
aic = aic, bic = bic,
BS = BS)
} else {
output <- list(Distribution = distr,
Hypothesis = hypo,
Test = c(KS = KS, CvM = CvM, AD = AD),
pval = c(KS = KSp, CvM = CvMp, AD = ADp),
Estimates = c(shape = alphaML, shape2 = gammaML,
location = muML, scale = betaML),
StdErrors = c(shapeSE = alphaSE, shape2SE = gammaSE,
locationSE = muSE, scaleSE = betaSE),
aic = aic, bic = bic,
BS = BS)
}
class(output) <- "gofcens"
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.