fit_gen_model: Fit Generative Model

Description Usage Arguments Value Examples

View source: R/gen_model.R

Description

A function to fit a generative model to a mutation dataset. At its heart, requires a gene_lengths dataframe (for examples of the correct format for this see the pre-loaded datasets example_maf_data$gene_lengths and ensembl_gene_lengths), and a mutation dataset. This is best supplied through the 'table' argument, and constructed via the function get_mutation_tables().

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
fit_gen_model(
  gene_lengths,
  matrix = NULL,
  sample_list = NULL,
  gene_list = NULL,
  mut_types_list = NULL,
  col_names = NULL,
  table = NULL,
  nlambda = 100,
  n_folds = 10,
  maxit = 1e+09,
  seed_id = 1234,
  progress = FALSE,
  alt_model_type = NULL
)

Arguments

gene_lengths

(dataframe) A table with two columns: Hugo_Symbol and max_cds, providing the lengths of the genes to be modelled.

matrix

(Matrix::sparseMatrix) A mutation matrix, such as produced by the function get_table_from_maf().

sample_list

(character) The set of samples to be modelled.

gene_list

(character) The set of genes to be modelled.

mut_types_list

(character) The set of mutation types to be modelled.

col_names

(character) The column names of the 'matrix' parameter.

table

(list) Optional parameter combining matrix, sample_list, gene_list, mut_types_list, col_names, as is produced by the function get_tables().

nlambda

(numeric) The length of the vector of penalty weights, passed to the function glmnet::glmnet().

n_folds

(numeric) The number of cross-validation folds to employ.

maxit

(numeric) Technical parameter passed to the function glmnet::glmnet().

seed_id

(numeric) Input value for the function set.seed().

progress

(logical) Show progress bars and text.

alt_model_type

(character) Used to call an alternative generative model type such as "US" (no sample-dependent parameters) or "UI" (no gene/variant-type interactions).

Value

A list comprising three objects:

Examples

1
2

ICBioMark documentation built on Nov. 15, 2021, 5:09 p.m.