Nothing
fitLMER.fnc <- function(model,
item=FALSE, # can be an item identifier such as "Item" or "Word"
backfit.on=c("F","t"),
method=c("F","t","z","llrt","AIC", "BIC","relLik.AIC","relLik.BIC"),
threshold=NULL,
t.threshold=NULL,
ran.effects=list(ran.intercepts=as.character(),
slopes=as.character(),
corr=as.character(),
by.vars=as.character()),
alpha=NULL,
alphaitem=NULL,
if.warn.not.add=TRUE,
prune.ranefs=TRUE,
p.value="upper",
set.REML.FALSE=TRUE,
keep.single.factors=FALSE,
reset.REML.TRUE=TRUE,
log.file.name=NULL # or other path and file name or FALSE
){
if(backfit.on[1]=="F"&&method[1]=="t"){
warning("resetting argument \"method\" to \"F\"\n")
method<-"F"
}
if(backfit.on[1]=="t"&&method[1]=="F"){
warning("resetting argument \"method\" to \"t\"\n")
method<-"t"
}
if(as.vector(model@call[1])=="glmer()"){
if(backfit.on=="F"){
backfit.on<-"t"
}
}
if(is.null(log.file.name)){
log.file.name<-file.path(tempdir(),paste("fitLMER_log_",gsub(":","-",
gsub(" ","_",date())),".txt",sep=""))
}
do.we.run.it<-1
if(is.list(ran.effects)){
if(unique(c(length(ran.effects$ran.intercepts),length(ran.effects$slopes),length(ran.effects$corr),length(ran.effects$by.vars)))==0){
do.we.run.it<-0
}
}else if(is.vector(ran.effects)){
if(length(ran.effects)==0){
do.we.run.it<-0
}
}
if(do.we.run.it==0){
warning("Argument \"ran.effects\" is empty, which means you will not be forward-fitting the random effect structure of your model. You could just as well run function \"bfFixefLMER_F.fnc\" or \"bfFixefLMER_t.fnc\".\n",immediate=TRUE)
}
current.dir=getwd()
temp.dir=tempdir()
tempdir()
if(log.file.name!=FALSE)sink(file=log.file.name,split=TRUE)
cat("======================================================\n")
cat("=== backfitting fixed effects ===\n")
cat("======================================================\n")
if(backfit.on[1]=="F"){
mod=bfFixefLMER_F.fnc(model=model,
item=item,method=method,threshold=threshold,alpha=alpha,
alphaitem=alphaitem,prune.ranefs=prune.ranefs,
p.value=p.value,set.REML.FALSE=set.REML.FALSE,
keep.single.factors=keep.single.factors,reset.REML.TRUE=FALSE,
log.file=FALSE)
}else{
mod=bfFixefLMER_t.fnc(model=model,item=item,method=method,
threshold=threshold,t.threshold=t.threshold,alphaitem=alphaitem,
prune.ranefs=prune.ranefs,set.REML.FALSE=set.REML.FALSE,
keep.single.factors=keep.single.factors,
reset.REML.TRUE=FALSE,log.file=FALSE)
}
cat("======================================================\n")
cat("=== forwardfitting random effects ===\n")
cat("======================================================\n")
mod=ffRanefLMER.fnc(model=mod,ran.effects=ran.effects,
alpha=ifelse(is.null(alpha),0.05,alpha),
if.warn.not.add=if.warn.not.add,log.file=FALSE)
cat("======================================================\n")
cat("=== re-backfitting fixed effects ===\n")
cat("======================================================\n")
if(backfit.on[1]=="F"){
mod=bfFixefLMER_F.fnc(model=mod,
item=item,method=method,threshold=threshold,alpha=alpha,
alphaitem=alphaitem,prune.ranefs=prune.ranefs,
p.value=p.value,set.REML.FALSE=set.REML.FALSE,
keep.single.factors=keep.single.factors,
reset.REML.TRUE=reset.REML.TRUE,log.file=FALSE)
}else{
mod=bfFixefLMER_t.fnc(model=mod,item=item,method=method,
threshold=threshold,t.threshold=t.threshold,alphaitem=alphaitem,
prune.ranefs=prune.ranefs,set.REML.FALSE=set.REML.FALSE,
keep.single.factors=keep.single.factors,
reset.REML.TRUE=reset.REML.TRUE,log.file=FALSE)
}
options(warn=0)
sink(file=NULL,type="message")
if(log.file.name!=FALSE){
cat("log file is",log.file.name,"\n")
sink(file=NULL)
}
return(model=mod)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.