Nothing
################################
## Sitcky HDP-HMM Poisson Changepoint Model
##
##
## Matthew Blackwell 05/22/2017
################################
#' Markov Chain Monte Carlo for sticky HDP-HMM with a Poisson
#' outcome distribution
#'
#' This function generates a sample from the posterior distribution of
#' a (sticky) HDP-HMM with a Poisson outcome distribution
#' (Fox et al, 2011). The user supplies data and priors, and a
#' sample from the posterior distribution is returned as an mcmc
#' object, which can be subsequently analyzed with functions provided
#' in the coda package.
#'
#' \code{HDPHMMpoisson} simulates from the posterior distribution of a
#' sticky HDP-HMM with a Poisson outcome distribution,
#' allowing for multiple, arbitrary changepoints in the model. The details of the
#' model are discussed in Blackwell (2017). The implementation here is
#' based on a weak-limit approximation, where there is a large, though
#' finite number of regimes that can be switched between. Unlike other
#' changepoint models in \code{MCMCpack}, the HDP-HMM approach allows
#' for the state sequence to return to previous visited states.
#'
#' The model takes the following form, where we show the fixed-limit version:
#'
#' \deqn{y_t \sim \mathcal{P}oisson(\mu_t)}
#'
#' \deqn{\mu_t = x_t ' \beta_m,\;\; m = 1, \ldots, M}
#'
#'
#' Where \eqn{M} is an upper bound on the number of states and
#' \eqn{\beta_m} are parameters when a state is
#' \eqn{m} at \eqn{t}.
#'
#' The transition probabilities between states are assumed to follow a
#' heirarchical Dirichlet process:
#'
#' \deqn{\pi_m \sim \mathcal{D}irichlet(\alpha\delta_1, \ldots,
#' \alpha\delta_j + \kappa, \ldots, \alpha\delta_M)}
#'
#' \deqn{\delta \sim \mathcal{D}irichlet(\gamma/M, \ldots, \gamma/M)}
#'
#' The \eqn{\kappa} value here is the sticky parameter that
#' encourages self-transitions. The sampler follows Fox et al (2011)
#' and parameterizes these priors with \eqn{\alpha + \kappa} and
#' \eqn{\theta = \kappa/(\alpha + \kappa)}, with the latter
#' representing the degree of self-transition bias. Gamma priors are
#' assumed for \eqn{(\alpha + \kappa)} and \eqn{\gamma}.
#'
#' We assume Gaussian distribution for prior of \eqn{\beta}:
#'
#' \deqn{\beta_m \sim \mathcal{N}(b_0,B_0^{-1}),\;\; m = 1, \ldots, M}
#'
#'
#' The model is simulated via blocked Gibbs conditonal on the states.
#' The \eqn{\beta} being simulated via the auxiliary mixture sampling
#' method of Fuerhwirth-Schanetter et al. (2009). The states are
#' updated as in Fox et al (2011), supplemental materials.
#'
#' @param formula Model formula.
#'
#' @param data Data frame.
#'
#' @param K The number of regimes under consideration. This should be
#' larger than the hypothesized number of regimes in the data. Note
#' that the sampler will likely visit fewer than \code{K} regimes.
#'
#' @param burnin The number of burn-in iterations for the sampler.
#'
#' @param mcmc The number of Metropolis iterations for the sampler.
#'
#' @param thin The thinning interval used in the simulation. The number of
#' mcmc iterations must be divisible by this value.
#'
#' @param verbose A switch which determines whether or not the progress of the
#' sampler is printed to the screen. If \code{verbose} is greater than 0 the
#' iteration number, the current beta vector, and the Metropolis acceptance
#' rate are printed to the screen every \code{verbose}th iteration.
#'
#' @param seed The seed for the random number generator. If NA, the Mersenne
#' Twister generator is used with default seed 12345; if an integer is passed
#' it is used to seed the Mersenne twister. The user can also pass a list of
#' length two to use the L'Ecuyer random number generator, which is suitable
#' for parallel computation. The first element of the list is the L'Ecuyer
#' seed, which is a vector of length six or NA (if NA a default seed of
#' \code{rep(12345,6)} is used). The second element of list is a positive
#' substream number. See the MCMCpack specification for more details.
#'
#'
#' @param b0 The prior mean of \eqn{\beta}. This can either be a scalar
#' or a column vector with dimension equal to the number of betas. If this
#' takes a scalar value, then that value will serve as the prior mean for all
#' of the betas.
#'
#' @param B0 The prior precision of \eqn{\beta}. This can either be a
#' scalar or a square matrix with dimensions equal to the number of betas. If
#' this takes a scalar value, then that value times an identity matrix serves
#' as the prior precision of beta. Default value of 0 is equivalent to an
#' improper uniform prior for beta.
#'
#' @param beta.start The starting value for the \eqn{\beta} vector. This
#' can either be a scalar or a column vector with dimension equal to the number
#' of betas. If this takes a scalar value, then that value will serve as the
#' starting value for all of the betas. The default value of NA will use the
#' maximum likelihood estimate of \eqn{\beta} as the starting value
#' for all regimes.
#'
#'
#' @param a.theta,b.theta Paramaters for the Beta prior on
#' \eqn{\theta}, which captures the strength of the self-transition
#' bias.
#'
#' @param a.alpha,b.alpha Shape and scale parameters for the Gamma
#' distribution on \eqn{\alpha + \kappa}.
#'
#' @param a.gamma,b.gamma Shape and scale parameters for the Gamma
#' distribution on \eqn{\gamma}.
#'
#' @param theta.start,ak.start,gamma.start Scalar starting values for the
#' \eqn{\theta}, \eqn{\alpha + \kappa}, and \eqn{\gamma} parameters.
#'
#' @param P.start Initial transition matrix between regimes. Should be
#' a \code{K} by \code{K} matrix. If not provided, the default value
#' will be place \code{theta.start} along the diagonal and the rest
#' of the mass even distributed within rows.
#'
#' @param ... further arguments to be passed.
#'
#' @return An mcmc object that contains the posterior sample. This object can
#' be summarized by functions provided by the coda package.
#'
#' @export
#'
#' @seealso \code{\link{MCMCpoissonChange}}, \code{\link{HDPHMMnegbin}}
#'
#' @references Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011.
#' ``MCMCpack: Markov Chain Monte Carlo in R.'', \emph{Journal of Statistical
#' Software}. 42(9): 1-21. \doi{10.18637/jss.v042.i09}.
#'
#' Daniel Pemstein, Kevin M. Quinn, and Andrew D. Martin. 2007. \emph{Scythe
#' Statistical Library 1.0.} \url{http://scythe.wustl.edu.s3-website-us-east-1.amazonaws.com/}.
#'
#' Sylvia Fruehwirth-Schnatter, Rudolf Fruehwirth, Leonhard Held, and
#' Havard Rue. 2009. ``Improved auxiliary mixture sampling for
#' hierarchical models of non-Gaussian data'', \emph{Statistics
#' and Computing} 19(4): 479-492.
#' <doi:10.1007/s11222-008-9109-4>
#'
#' Matthew Blackwell. 2017. ``Game Changers: Detecting Shifts in
#' Overdispersed Count Data,'' \emph{Political Analysis}
#' 26(2), 230-239. <doi:10.1017/pan.2017.42>
#'
#' Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S.
#' Willsky. 2011.. ``A sticky HDP-HMM with application to speaker
#' diarization.'' \emph{The Annals of Applied Statistics}, 5(2A),
#' 1020-1056. <doi:10.1214/10-AOAS395>
#'
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' n <- 150
#' reg <- 3
#' true.s <- gl(reg, n/reg, n)
#' b1.true <- c(1, -2, 2)
#' x1 <- runif(n, 0, 2)
#' mu <- exp(1 + x1 * b1.true[true.s])
#' y <- rpois(n, mu)
#'
#' posterior <- HDPHMMpoisson(y ~ x1, K = 10, verbose = 1000,
#' a.theta = 100, b.theta = 1,
#' b0 = rep(0, 2), B0 = (1/9) * diag(2),
#' seed = list(NA, 2),
#' theta.start = 0.95, gamma.start = 10,
#' ak.start = 10)
#'
#' plotHDPChangepoint(posterior, ylab="Density", start=1)
#' }
#'
"HDPHMMpoisson"<-
function(formula, data = parent.frame(), K = 10,
b0 = 0, B0 = 1,
a.alpha = 1, b.alpha = 0.1, a.gamma = 1, b.gamma = 0.1,
a.theta = 50, b.theta = 5,
burnin = 1000, mcmc = 1000, thin = 1, verbose = 0,
seed = NA, beta.start = NA, P.start = NA,
gamma.start = 0.5, theta.start = 0.98, ak.start = 100, ...) {
## form response and model matrices
holder <- parse.formula(formula, data)
y <- holder[[1]]
X <- holder[[2]]
xnames <- holder[[3]]
J <- ncol(X)
n <- length(y)
n.arrival<- y + 1
NT <- max(n.arrival)
tot.comp <- n + sum(y)
ns <- K
## check iteration parameters
check.mcmc.parameters(burnin, mcmc, thin)
totiter <- mcmc + burnin
cl <- match.call()
nstore <- mcmc/thin
## seeds
seeds <- form.seeds(seed)
lecuyer <- seeds[[1]]
seed.array <- seeds[[2]]
lecuyer.stream <- seeds[[3]]
if(!any(is.na(seed)) & (length(seed) == 1)) set.seed(seed)
mvn.prior <- form.mvn.prior(b0, B0, J)
b0 <- mvn.prior[[1]]
B0 <- mvn.prior[[2]]
Pstart <- check.hdp.P(P.start, ns, n, theta.start)
betastart <- beta.change.start(beta.start, ns, J, formula, family=poisson, data)
## new taus/
taustart <- tau.negbin.initial(y)
component1start <- round(runif(tot.comp, 1, 10))
## call C++ code to draw sample
posterior <- .C("cHDPHMMpoisson",
betaout = as.double(rep(0.0, nstore*ns*J)),
Pout = as.double(rep(0.0, nstore*ns*ns)),
psout = as.double(rep(0.0, n*ns)),
sout = as.double(rep(0.0, nstore*n)),
tau1out = as.double(rep(0.0, nstore*n)),
tau2out = as.double(rep(0.0, nstore*n)),
comp1out = as.integer(rep(0, nstore*n)),
comp2out = as.integer(rep(0, nstore*n)),
sr1out = as.double(rep(0, nstore*n)),
sr2out = as.double(rep(0, nstore*n)),
mr1out = as.double(rep(0, nstore*n)),
mr2out = as.double(rep(0, nstore*n)),
gammaout = as.double(rep(0, nstore)),
akout = as.double(rep(0, nstore)),
thetaout = as.double(rep(0, nstore)),
Ydata = as.double(y),
Yrow = as.integer(nrow(y)),
Ycol = as.integer(ncol(y)),
Xdata = as.double(X),
Xrow = as.integer(nrow(X)),
Xcol = as.integer(ncol(X)),
K = as.integer(K),
burnin = as.integer(burnin),
mcmc = as.integer(mcmc),
thin = as.integer(thin),
verbose = as.integer(verbose),
betastart = as.double(betastart),
Pstart = as.double(Pstart),
tau1start = as.double(taustart$tau1),
tau2start = as.double(taustart$tau2),
component1start = as.double(component1start),
gammastart = as.double(gamma.start),
akstart = as.double(ak.start),
thetastart = as.double(theta.start),
a_alpha = as.double(a.alpha),
b_alpha = as.double(b.alpha),
a_gamma = as.double(a.gamma),
b_gamma = as.double(b.gamma),
a_theta = as.double(a.theta),
b_theta = as.double(b.theta),
lecuyer = as.integer(lecuyer),
seedarray = as.integer(seed.array),
lecuyerstream = as.integer(lecuyer.stream),
b0data = as.double(b0),
B0data = as.double(B0),
PACKAGE="MCMCpack")
## pull together matrix and build MCMC object to return
beta.holder <- matrix(posterior$betaout, nstore, )
P.holder <- matrix(posterior$Pout, nstore, )
s.holder <- matrix(posterior$sout, nstore, )
tau1.holder <- matrix(posterior$tau1out, nstore, )
tau2.holder <- matrix(posterior$tau2out, nstore, )
comp1.holder <- matrix(posterior$comp1out, nstore, )
comp2.holder <- matrix(posterior$comp2out, nstore, )
sr1.holder <- matrix(posterior$sr1out, nstore, )
sr2.holder <- matrix(posterior$sr2out, nstore, )
mr1.holder <- matrix(posterior$mr1out, nstore, )
mr2.holder <- matrix(posterior$mr2out, nstore, )
nsts <- apply(s.holder, 1, function(x) length(unique(x)))
mode.mod <- as.numeric(names(which.max(table(nsts))))
pr.chpt <- rowMeans(rbind(0, diff(t(s.holder)) != 0))
output <- mcmc(data=beta.holder, start=burnin+1, end=burnin + mcmc, thin=thin)
varnames(output) <- sapply(c(1:ns), function(i) { paste(xnames,
"_regime", i, sep = "")})
attr(output, "title") <- "HDPHMMpoisson Posterior Sample"
attr(output, "formula") <- formula
attr(output, "y") <- y
attr(output, "X") <- X
attr(output, "K") <- K
attr(output, "call") <- cl
attr(output, "pr.chpt") <- pr.chpt
attr(output, "s.store") <- s.holder
attr(output, "P.store") <- P.holder
## attr(output, "tau1.store") <- tau1.holder
## attr(output, "tau2.store") <- tau2.holder
## attr(output, "comp1.store") <- comp1.holder
## attr(output, "comp2.store") <- comp2.holder
## attr(output, "sr1.store") <- sr1.holder
## attr(output, "sr2.store") <- sr2.holder
## attr(output, "mr1.store") <- mr1.holder
## attr(output, "mr2.store") <- mr2.holder
attr(output, "num.regimes") <- nsts
attr(output, "gamma.store") <- posterior$gammaout
attr(output, "theta.store") <- posterior$thetaout
attr(output, "ak.store") <- posterior$akout
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.