Nothing
####################################################################
## HMM Gaussian Panel with Time Varying Intercepts
##
## first written by Jong Hee Park on 02/2009
## revised for MCMCpack inclusion on 09/2011
######################################################################
#' Markov Chain Monte Carlo for the Hidden Markov Fixed-effects Model
#'
#' HMMpanelFE generates a sample from the posterior distribution of
#' the fixed-effects model with varying individual effects model
#' discussed in Park (2011). The code works for both balanced and
#' unbalanced panel data as long as there is no missing data in the
#' middle of each group. This model uses a multivariate Normal prior
#' for the fixed effects parameters and varying individual effects, an
#' Inverse-Gamma prior on the residual error variance, and Beta prior
#' for transition probabilities. The user supplies data and priors,
#' and a sample from the posterior distribution is returned as an mcmc
#' object, which can be subsequently analyzed with functions provided
#' in the coda package.
#'
#' \code{HMMpanelFE} simulates from the fixed-effect hidden Markov
#' pbject level: \deqn{\varepsilon_{it} \sim \mathcal{N}(\alpha_{im},
#' \sigma^2_{im})}
#'
#' We assume standard, semi-conjugate priors: \deqn{\beta \sim
#' \mathcal{N}(b_0,B_0^{-1})} And: \deqn{\sigma^{-2} \sim
#' \mathcal{G}amma(c_0/2, d_0/2)} And: \deqn{\alpha \sim
#' \mathcal{N}(delta_0,Delta_0^{-1})} \eqn{\beta}, \eqn{\alpha} and
#' \eqn{\sigma^{-2}} are assumed \emph{a priori} independent.
#'
#' And: \deqn{p_{mm} \sim \mathcal{B}eta(a, b),\;\; m = 1, \ldots, M}
#' Where \eqn{M} is the number of states.
#'
#' OLS estimates are used for starting values.
#'
#' @param subject.id A numeric vector indicating the group number. It
#' should start from 1.
#'
#' @param y The response variable.
#'
#' @param X The model matrix excluding the constant.
#'
#' @param m A vector of break numbers for each subject in the panel.
#'
#' @param mcmc The number of MCMC iterations after burn-in.
#'
#' @param burnin The number of burn-in iterations for the sampler.
#'
#' @param thin The thinning interval used in the simulation. The
#' number of MCMC iterations must be divisible by this value.
#'
#' @param verbose A switch which determines whether or not the
#' progress of the sampler is printed to the screen. If
#' \code{verbose} is greater than 0, the iteration number and the
#' posterior density samples are printed to the screen every
#' \code{verbose}th iteration.
#'
#' @param b0 The prior mean of \eqn{\beta}. This can either be a
#' scalar or a column vector with dimension equal to the number of
#' betas. If this takes a scalar value, then that value will serve
#' as the prior mean for all of the betas.
#'
#' @param B0 The prior precision of \eqn{\beta}. This can either be a
#' scalar or a square matrix with dimensions equal to the number of
#' betas. If this takes a scalar value, then that value times an
#' identity matrix serves as the prior precision of beta. Default
#' value of 0 is equivalent to an improper uniform prior for beta.
#'
#' @param c0 \eqn{c_0/2} is the shape parameter for the inverse Gamma
#' prior on \eqn{\sigma^2} (the variance of the disturbances). The
#' amount of information in the inverse Gamma prior is something
#' like that from \eqn{c_0} pseudo-observations.
#'
#' @param d0 \eqn{d_0/2} is the scale parameter for the inverse Gamma
#' prior on \eqn{\sigma^2} (the variance of the disturbances). In
#' constructing the inverse Gamma prior, \eqn{d_0} acts like the sum
#' of squared errors from the \eqn{c_0} pseudo-observations.
#'
#' @param delta0 The prior mean of \eqn{\alpha}.
#'
#' @param Delta0 The prior precision of \eqn{\alpha}.
#'
#' @param a \eqn{a} is the shape1 beta prior for transition
#' probabilities. By default, the expected duration is computed and
#' corresponding a and b values are assigned. The expected duration
#' is the sample period divided by the number of states.
#'
#' @param b \eqn{b} is the shape2 beta prior for transition
#' probabilities. By default, the expected duration is computed and
#' corresponding a and b values are assigned. The expected duration
#' is the sample period divided by the number of states.
#'
#' @param seed The seed for the random number generator. If NA,
#' current R system seed is used.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This
#' object can be summarized by functions provided by the coda
#' package. The object contains an attribute \code{sigma} storage
#' matrix that contains time-varying residual variance, an attribute
#' \code{state} storage matrix that contains posterior samples of
#' hidden states, and an attribute \code{delta} storage matrix
#' containing time-varying intercepts.
#'
#' @export
#'
#' @references Jong Hee Park, 2012. ``Unified Method for Dynamic and
#' Cross-Sectional Heterogeneity: Introducing Hidden Markov Panel
#' Models.'' \emph{American Journal of Political Science}.56:
#' 1040-1054. <doi: 10.1111/j.1540-5907.2012.00590.x>
#'
#' Siddhartha Chib. 1998. ``Estimation and comparison of multiple
#' change-point models.'' \emph{Journal of Econometrics}. 86: 221-241.
#' <doi: 10.1016/S0304-4076(97)00115-2>
#'
#' Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011.
#' ``MCMCpack: Markov Chain Monte Carlo in R.'', \emph{Journal of Statistical
#' Software}. 42(9): 1-21. \doi{10.18637/jss.v042.i09}.
#'
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' ## data generating
#' set.seed(1974)
#' N <- 30
#' T <- 80
#' NT <- N*T
#'
#' ## true parameter values
#' true.beta <- c(1, 1)
#' true.sigma <- 3
#' x1 <- rnorm(NT)
#' x2 <- runif(NT, 2, 4)
#'
#' ## group-specific breaks
#' break.point = rep(T/2, N); break.sigma=c(rep(1, N));
#' break.list <- rep(1, N)
#'
#' X <- as.matrix(cbind(x1, x2), NT, );
#' y <- rep(NA, NT)
#' id <- rep(1:N, each=NT/N)
#' K <- ncol(X);
#' true.beta <- as.matrix(true.beta, K, 1)
#'
#' ## compute the break probability
#' ruler <- c(1:T)
#' W.mat <- matrix(NA, T, N)
#' for (i in 1:N){
#' W.mat[, i] <- pnorm((ruler-break.point[i])/break.sigma[i])
#' }
#' Weight <- as.vector(W.mat)
#'
#' ## draw time-varying individual effects and sample y
#' j = 1
#' true.sigma.alpha <- 30
#' true.alpha1 <- true.alpha2 <- rep(NA, N)
#' for (i in 1:N){
#' Xi <- X[j:(j+T-1), ]
#' true.mean <- Xi %*% true.beta
#' weight <- Weight[j:(j+T-1)]
#' true.alpha1[i] <- rnorm(1, 0, true.sigma.alpha)
#' true.alpha2[i] <- -1*true.alpha1[i]
#' y[j:(j+T-1)] <- ((1-weight)*true.mean + (1-weight)*rnorm(T, 0, true.sigma) +
#' (1-weight)*true.alpha1[i]) +
#' (weight*true.mean + weight*rnorm(T, 0, true.sigma) + weight*true.alpha2[i])
#' j <- j + T
#' }
#'
#' ## extract the standardized residuals from the OLS with fixed-effects
#' FEols <- lm(y ~ X + as.factor(id) -1 )
#' resid.all <- rstandard(FEols)
#' time.id <- rep(1:80, N)
#'
#' ## model fitting
#' G <- 100
#' BF <- testpanelSubjectBreak(subject.id=id, time.id=time.id,
#' resid= resid.all, max.break=3, minimum = 10,
#' mcmc=G, burnin = G, thin=1, verbose=G,
#' b0=0, B0=1/100, c0=2, d0=2, Time = time.id)
#'
#' ## get the estimated break numbers
#' estimated.breaks <- make.breaklist(BF, threshold=3)
#'
#' ## model fitting
#' out <- HMMpanelFE(subject.id = id, y, X=X, m = estimated.breaks,
#' mcmc=G, burnin=G, thin=1, verbose=G,
#' b0=0, B0=1/100, c0=2, d0=2, delta0=0, Delta0=1/100)
#'
#' ## print out the slope estimate
#' ## true values are 1 and 1
#' summary(out)
#'
#' ## compare them with the result from the constant fixed-effects
#' summary(FEols)
#' }
#'
"HMMpanelFE" <-
function(subject.id, y, X, m,
mcmc=1000, burnin=1000, thin=1, verbose=0,
b0=0, B0=0.001, c0 = 0.001, d0 = 0.001, delta0=0, Delta0=0.001,
a = NULL, b = NULL, seed = NA, ...){
## m should be a vector with a number of breaks for each group
## id is a numeric list
## p is a lag order
## offset is the first time period from which each group starts
## seeds
seeds <- form.seeds(seed)
lecuyer <- seeds[[1]]
seed.array <- seeds[[2]]
lecuyer.stream <- seeds[[3]]
## Data
Y <- as.matrix(y);
X <- as.matrix(cbind(1, X)) ## the intercept is not reported
N <- nrow(Y);
K <- ncol(X)
mvn.prior <- form.mvn.prior(b0, B0, K)
b0 <- mvn.prior[[1]]
B0 <- mvn.prior[[2]]
mvn.prior <- form.mvn.prior(delta0, Delta0, 1)
delta0 <- mvn.prior[[1]]
Delta0 <- mvn.prior[[2]]
nstore <- mcmc/thin
nsubj <- length(unique(subject.id))
## groupinfo matrix
## col1: subj ID, col2: offset (first time C indexing), col3: #time periods
if (unique(subject.id)[1] != 1){
stop("subject.id should start 1!")
}
subject.offset <- c(0, which(diff(sort(subject.id))==1)[-nsubj])
## col1: subj ID, col2: offset (C indexing), col3: #time periods in each subject
nsubject.vec <- rep(NA, nsubj)
for (i in 1:nsubj){
nsubject.vec[i] <- sum(subject.id==unique(subject.id)[i])
}
subject.groupinfo <- cbind(unique(subject.id), subject.offset, nsubject.vec)
## maximum time length
ntime <- max(nsubject.vec)
m.max <- max(m)
m.min <- min(m)
## prior inputs
P0data <- NULL
Pstart <- NULL
for (i in 1:nsubj){
if(m[i] == 0){
P0current <- 1
Pstartcurrent <- 1
}
else{
P0current <- trans.mat.prior(m=m[i], n=nsubject.vec[i], a=a, b=b)
Pstartcurrent <- trans.mat.prior(m=m[i], n=nsubject.vec[i], a=.9, b=.1)
}
P0data <- c(P0data, P0current)
Pstart <- c(Pstart, Pstartcurrent)
}
## starting values
ols <- lm(Y~X-1)
beta.start <- coef(ols)
sigma2.start <- summary(ols)$sigma^2
deltastart <- NULL
Ytilde <- Y - X%*%beta.start
deltaformula <- Ytilde ~ 1 ## without intercept
for (i in 1:nsubj){
deltacurrent <- rep(as.vector(coef(lm(Ytilde ~ 1))), m[i] + 1)
deltastart <- c(deltastart, deltacurrent)
}
## Storage
totalstates0 <- sum(m+1)
betadraws0 <- matrix(0, nstore, K)
deltadraws0 <- matrix(data=0, nstore, totalstates0)
sigmadraws0 <- matrix(data=0, nstore, totalstates0)
statedraws0 <- matrix(data=0, nstore, totalstates0)
## call C++ code to draw sample
posterior <- .C("cHMMpanelFE",
deltadraws = as.double(deltadraws0),
sigmadraws = as.double(sigmadraws0),
statedraws = as.double(statedraws0),
betadraws = as.double(betadraws0),
betarow = as.integer(nrow(betadraws0)),
betacol = as.integer(ncol(betadraws0)),
totalstates = as.integer(totalstates0),
nsubj = as.integer(nsubj),
ntime = as.integer(ntime),
nobs = as.integer(N),
subjectid = as.integer(subject.id),
m = as.integer(m),
mmax = as.integer(m.max),
mmin = as.integer(m.min),
Ydata = as.double(Y),
Yrow = as.integer(nrow(Y)),
Ycol = as.integer(ncol(Y)),
Xdata = as.double(X),
Xrow = as.integer(nrow(X)),
Xcol = as.integer(ncol(X)),
burnin = as.integer(burnin),
mcmc = as.integer(mcmc),
thin = as.integer(thin),
verbose = as.integer(verbose),
lecuyer = as.integer(lecuyer),
seedarray = as.integer(seed.array),
lecuyerstream = as.integer(lecuyer.stream),
betastartdata = as.double(beta.start),
sigma2start = as.double(sigma2.start),
deltastartdata = as.double(deltastart),
deltastartrow = as.integer(length(deltastart)),
b0data = as.double(b0),
B0data = as.double(B0),
delta0data = as.double(delta0),
Delta0data = as.double(Delta0),
c0 = as.double(c0),
d0 = as.double(d0),
P0data = as.double(P0data),
P0row = as.integer(length(P0data)),
Pstartdata = as.double(Pstart),
subject_groupinfodata = as.double(subject.groupinfo),
PACKAGE="MCMCpack")
## pull together matrix and build MCMC object to return
betadraws <- matrix(posterior$betadraws,
posterior$betarow,
posterior$betacol)
sigma.samp <- as.mcmc(matrix(posterior$sigmadraws, nstore, totalstates0))
delta.samp <- as.mcmc(matrix(posterior$deltadraws, nstore, totalstates0))
state.samp <- as.mcmc(matrix(posterior$statedraws, nstore, totalstates0))
## output <- mcmc(betadraws, start=burnin+1, end=burnin+mcmc, thin=thin)
output <- as.mcmc(betadraws[, -1])## drop the intercept
attr(output, "title") <- "HMMpanelFE Sample"
attr(output, "m") <- m
attr(output, "sigma") <- sigma.samp
attr(output, "state") <- state.samp
attr(output, "delta") <- delta.samp
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.