MSIseq.train: Build Microsatellite Instability Classification Model with...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/MSIseq.train.R

Description

This function generate a detector for MSI status based on the mutation information in the mutationNum parameter.

Usage

1
MSIseq.train(mutationNum, classification, cancerType = NULL)

Arguments

mutationNum

A data frame output from Compute.input.variables, which containing 9 variables: T.sns, S.sns, T.ind, S.ind, T, S, Ratio.sns, Ratio.ind, Ratio.

classification

A data frame with two columns: Tumor_Sample_Barcode (tumor ID) and the corresponding MSI_status. Check NGStrainclass for detail.

cancerType

A data frame with two columns: Tumor_Sample_Barcode (tumor ID) and the corresponding cancer_type. Check NGStraintype for detail.

Details

This function builds and evaluates a decision tree model from mutationNum.

Value

A Weka_classifier object: a decision tree model built with the 'RWeka' function J48()

Author(s)

Mini Huang

References

Kurt Hornik, Christian Buchta, Achim Zeileis (2009) Open-Source Machine Learning: R Meets Weka. Computational Statistics, 24(2), 225-232.

See Also

MSIseq.classify, Compute.input.variables

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
## load sample data (train.mutationNum, NGStraintype, 
## NGStrainclass)

data(train.mutationNum)
data(NGStrainclass)
data(NGStraintype)

## create NGSclassifier with traindata
## note that this is a built-in classifier, which can be directly used 
## if you do not have your own training data to create a classifier

NGSclassifier<-MSIseq.train(mutationNum = train.mutationNum, 
  classification=NGStrainclass, cancerType=NGStraintype)

MSIseq documentation built on May 29, 2017, 9:07 p.m.