R/simConnectivity.R

Defines functions simCMRData simProbData simTelemetryData simGLData simMove

Documented in simCMRData simGLData simMove simProbData simTelemetryData

###############################################################################
# Simulates position of birds by individual, season, year, and month.
# Incorporates migratory connectivity, movement within season, and dispersal
# between seasons.
# Does not incorporate births or deaths.
###############################################################################
#' Simulates position of birds by individual, season, year, and month.
#'
#' Incorporates migratory connectivity, movement within season, and dispersal
#' between seasons. Does not incorporate births or deaths.
#'
#' @param breedingAbund Vector with number of birds to simulate starting at
#'    each breeding site.
#' @param breedingDist Distances between the breeding sites. Symmetric matrix.
#' @param winteringDist Distances between the wintering sites. Symmetric
#'    matrix.
#' @param psi Transition probabilities between B origin and W target sites.
#'    A matrix with B rows and W columns where rows sum to 1.
#' @param nYears Number of years to simulate movement.
#' @param nMonths Number of months per breeding and wintering season.
#' @param winMoveRate Within winter movement rate.  Defaults to 0 (no
#'    movement).
#' @param sumMoveRate Within summer movement rate.  Defaults to 0 (no
#'    movement).
#' @param winDispRate Between winter dispersal rate.  Defaults to 0 (no
#'    dispersal).
#' @param sumDispRate Between summer dispersal rate.  Defaults to 0 (no
#'    dispersal).  Setting this to a value above 0 is equivalent to setting
#'    both natal and breeding dispersal to that same value.
#' @param natalDispRate Natal dispersal rate. Controls the movement of
#'    animals from their birthplace on their first return to the breeding
#'    grounds.  Defaults to 0 (return to the birthplace for all).
#' @param breedDispRate Breeding dispersal rate. Controls the movement of
#'    animals between breeding sites on spring migrations after the first.
#'    Defaults to 0 (return to the same breeding site each year).
#' @param verbose If set to a value > 0, informs the user on the passage
#'    of years and seasons during the simulation. Defaults to 0 (no output
#'    during simulation).
#'
#' @return \code{simMove} returns a list with elements:
#' \describe{
#'   \item{\code{animalLoc}}{\code{sum(breedingAbund)} (number of animals)
#'      by 2 by \code{nYears} by \code{nMonths} array with the simulated
#'      locations of each animal in each month of each season (summer or
#'      winter) of each year.  Values of cells are 1...B (first column) and
#'      1...W (second column) where B is the number of breeding sites and W is
#'      the number of wintering sites.}
#'   \item{\code{breedDispMat}}{B by B matrix of probabilities of breeding
#'      dispersal between each pair of 1...B breeding sites.  Direction is from
#'      row to column, so each row sums to 1.}
#'   \item{\code{natalDispMat}}{B by B matrix of probabilities of natal
#'      dispersal between each pair of 1...B breeding sites.  Direction is from
#'      row to column, so each row sums to 1.}
#'   \item{\code{sumMoveMat}}{B by B matrix of probabilities of within season
#'      movement between each pair of 1...B breeding sites.  Direction is from
#'      row to column, so each row sums to 1.}
#'   \item{\code{winDispMat}}{W by W matrix of probabilities of dispersal
#'      between each pair of 1...W nonbreeding sites.  Direction is from
#'      row to column, so each row sums to 1.}
#'   \item{\code{winMoveMat}}{W by W matrix of probabilities of within season
#'      movement between each pair of 1...W nonbreeding sites.  Direction is
#'      from row to column, so each row sums to 1.}
#' }
#'
#' @export
#' @example inst/examples/simMoveExamples.R
#' @references
#' Cohen, E. B., J. A. Hostetler, M. T. Hallworth, C. S. Rushing, T. S. Sillett,
#' and P. P. Marra. 2018. Quantifying the strength of migratory connectivity.
#' Methods in Ecology and Evolution 9: 513-524.
#' \doi{10.1111/2041-210X.12916}
simMove <- function(breedingAbund, breedingDist, winteringDist, psi,
                    nYears = 10, nMonths = 3, winMoveRate = 0,
                    sumMoveRate = 0, winDispRate = 0, sumDispRate = 0,
                    natalDispRate = 0, breedDispRate = 0, verbose = 0)
{
  nSeasons <- 2
  nBreeding <- length(breedingAbund)
  nWintering <- nrow(winteringDist)

  if (sumDispRate>0 && (natalDispRate>0 || breedDispRate>0) &&
      (sumDispRate!=natalDispRate || sumDispRate!=breedDispRate))
    stop("Can't specify summer dispersal separately from breeding or natal dispersal")
  if (sumDispRate<0 || natalDispRate<0 || breedDispRate<0 ||sumMoveRate<0 ||
      winMoveRate<0)
    stop("Can't specify negative movement or dispersal rates")

  # Turn rate terms into probabilities
  if (winMoveRate>0) {
    winMoveMat <- mlogitMat(1/sqrt(winMoveRate), winteringDist)
  }
  else
    winMoveMat <- NULL
  if (sumMoveRate>0) {
    sumMoveMat <- mlogitMat(1/sqrt(sumMoveRate), breedingDist)
  }
  else
    sumMoveMat <- NULL
  if (winDispRate>0) {
    winDispMat <- mlogitMat(1/sqrt(winDispRate), winteringDist)
  }
  else
    winDispMat <- NULL
  if (sumDispRate>0) {
    natalDispRate <- sumDispRate
    breedDispRate <- sumDispRate
  }
  if (natalDispRate>0) {
    natalDispMat <- mlogitMat(1/sqrt(natalDispRate), breedingDist)
  }
  else
    natalDispMat <- NULL
  if (breedDispRate>0) {
    breedDispMat <- mlogitMat(1/sqrt(breedDispRate), breedingDist)
  }
  else
    breedDispMat <- NULL

  # Storage of locations
  animalLoc <- array(NA, c(sum(breedingAbund), nSeasons, nYears, nMonths))
  animalLoc[,1,1,1] <- rep(1:nBreeding, breedingAbund)

  # Run simulation
  for (y in 1:nYears) {
    if (verbose>0)
      cat("Year", y, "Summer, ")
    if (nMonths > 1)
      for (sm in 2:nMonths) {
        if (sumMoveRate==0)
          animalLoc[,1,y,sm] <- animalLoc[,1,y,sm-1]
        else
          for (i in 1:sum(breedingAbund))
            animalLoc[i,1,y,sm] <- which(rmultinom(1,1, sumMoveMat[animalLoc[i,1,y,sm-1], ])>0)
      }
    if (verbose>0)
      cat("Fall, ")
    if (y == 1) {
      for (i in 1:sum(breedingAbund))
        animalLoc[i,2,y,1] <- which(rmultinom(1,1, psi[animalLoc[i,1,y,1], ])>0)
    }
    else if (winDispRate==0)
      animalLoc[,2,y,1] <- animalLoc[,2,y-1,1]
    else
      for (i in 1:sum(breedingAbund))
        animalLoc[i,2,y,1] <- which(rmultinom(1,1, winDispMat[animalLoc[i,2,y-1,1], ])>0)
    if (verbose>0)
      cat("Winter, ")
    if (nMonths > 1)
      for (wm in 2:nMonths) {
        if (winMoveRate==0)
          animalLoc[,2,y,wm] <- animalLoc[,2,y,wm-1]
        else
          for (i in 1:sum(breedingAbund))
            animalLoc[i,2,y,wm] <- which(rmultinom(1,1, winMoveMat[animalLoc[i,2,y,wm-1], ])>0)
      }
    if (verbose>0)
      cat("Spring\n")
    if (y == 1 & nYears>1) {
      if (natalDispRate==0)
        animalLoc[,1,y+1,1] <- animalLoc[,1,y,1]
      else
        for (i in 1:sum(breedingAbund))
          animalLoc[i,1,y+1,1] <- which(rmultinom(1,1, natalDispMat[animalLoc[i,1,y,1], ])>0)
    }
    else if (y < nYears) {
      if (breedDispRate==0)
        animalLoc[,1,y+1,1] <- animalLoc[,1,y,1]
      else
        for (i in 1:sum(breedingAbund))
          animalLoc[i,1,y+1,1] <- which(rmultinom(1,1, breedDispMat[animalLoc[i,1,y,1], ])>0)
    }
  }
  return(list(animalLoc = animalLoc, natalDispMat = natalDispMat,
              breedDispMat = breedDispMat, sumMoveMat = sumMoveMat,
              winDispMat = winDispMat, winMoveMat = winMoveMat))
}


###############################################################################
# Function for generating simulated count data
###############################################################################
#' Simulates Breeding Bird Survey-style count data
#'
#' Recently updated (version 0.4.3) to more properly match current BBS models.
#' \code{modelCountDataJAGS} has not been updated yet
#'
#' @param nStrata Number of populations/regions/strata
#' @param routesPerStrata Vector of length 1 or nStrata containing the number of
#'  routes (i.e. counts) per stratum. If length(routesPerStrata) == 1, number of
#'  routes is identical for each population
#' @param nYears Number of years surveys were conducted
#' @param alphaStrat Vector of length 1 or nStrata containing the log expected
#'  number of individuals counted at each route for each population. If
#'  length(alphaStrat) == 1, expected counts are identical for each population
#' @param beta Coefficient of linear year effect (default 0)
#' @param eta Coefficient of first time run effect (default 0)
#' @param sdRoute Standard deviation of random route-level variation. Default is
#'  0, and if you're setting sdObs, it's probably best to keep it that way
#' @param sdYear Standard deviation of random year-level variation (default 0)
#' @param sdObs Standard deviation of random observer variation (default 0)
#' @param sdCount Standard deviation of random count-level variation (default 0)
#' @param model One of "S" (default), "Sh", "D", and "Dh". See Link et al.
#'  (2020) for descriptions of these models
#' @param obsSurvival Annual probability that the observer that ran a route one
#'  year will run it the next. Default 1 (each route has only one observer)
#' @param fixedyear The year within nYears that alphaStrat applies directly to
#'  (default halfway through)
#' @param nuCount For the "h" models, parameter for extra variation in counts
#'  (default 1)
#'
#' @return \code{simCountData} returns a list containing:
#'  \describe{
#'    \item{\code{nStrata}}{Number of populations/regions.}
#'    \item{\code{nRoutes}}{Total number of routes.}
#'    \item{\code{nYears}}{Number of years.}
#'    \item{\code{routesPerStrata}}{Number of routes per population.}
#'    \item{\code{year}}{Vector of length nYears with standardized year values.}
#'    \item{\code{strat}}{Vector of length nRoutes indicating the
#'      population/region in which each route is located.}
#'    \item{\code{alphaStrat}}{log expected count for each populations.}
#'    \item{\code{epsRoute}}{realized deviation from alphaStrat for each route.}
#'    \item{\code{epsYear}}{realized deviation from alphaStrat for each year.}
#'    \item{\code{beta}}{linear year effect.}
#'    \item{\code{sdRoute}}{standard deviation of random route-level variation.}
#'    \item{\code{sdYear}}{standard deviation of random year-level variation.}
#'    \item{\code{expectedCount}}{nRoutes by nYears matrix containing
#'      deterministic expected counts.}
#'    \item{\code{C}}{nRoutes by nYears matrix containing observed counts.}
#'   }
#'
#'
#' @export
#' @example inst/examples/simCountExamples.R
#' @references
#' Cohen, E. B., J. A. Hostetler, M. T. Hallworth, C. S. Rushing, T. S. Sillett,
#' and P. P. Marra. 2018. Quantifying the strength of migratory connectivity.
#' Methods in Ecology and Evolution 9: 513-524.
#' \doi{10.1111/2041-210X.12916}
#'
#' Link, W. A., J. R. Sauer, and D. K. Niven. 2020. Model selection for the
#' North American Breeding Bird Survey. Ecological Applications 30: e02137.
#' \doi{10.1002/eap.2137}

simCountData <- function (nStrata, routesPerStrata, nYears, alphaStrat, beta = 0,
                          eta = 0, sdRoute = 0, sdYear = 0, sdObs = 0, sdCount = 0,
                          model = c("S", "Sh", "D", "Dh"), obsSurvival = 1,
                          fixedyear = round(nYears/2), nuCount = 1){
  model <- match.arg(model)
  if(length(routesPerStrata) == 1){
    routesPerStrata <- rep(routesPerStrata, nStrata)
  }
  nRoutes <- sum(routesPerStrata)

  strat <- rep(1:nStrata, routesPerStrata) # Population index for each route

  if(length(alphaStrat) == 1) {
    alphaStrat <- rep(alphaStrat, nStrata)
  }
  if(length(beta) == 1) {
    beta <- rep(beta, nStrata)
  }
  if(length(sdRoute) == 1) {
    sdRoute <- rep(sdRoute, nStrata)
  }
  if(length(sdYear) == 1) {
    sdYear <- rep(sdYear, nStrata)
  }


  # Generate data structure to hold counts and log (lambda)
  first <- obser <- C <- log.expectedCount <- array(0, dim = c(nYears, nRoutes))
  expectedCount <- array(0, dim = c(nYears, nRoutes))
  epsYear <- array(0, dim = c(nYears, nStrata))

  # Generate covariate values
  year <- 1:nYears
  yr <- year - fixedyear # Standardize

  # Generate sequence of observers
  nObs <- 0
  for (r in 1:nRoutes) {
    nObs <- nObs + 1
    obser[1, r] <- nObs
    first[1, r] <- 1
    for (y in 2:nYears) {
      if (rbinom(1, 1, obsSurvival)==0){
        nObs <- nObs + 1
        first[y, r] <- 1
      }
      obser[y, r] <- nObs
    }
  }

  # Draw two sets of random effects from their respective distributions
  epsObs <- rnorm(n = nObs, mean = 0, sd = sdObs)
  epsCount <- rnorm(n = nRoutes * nYears, mean = 0, sd = sdCount)
  if (model == "Sh" || model == "Dh"){
    V <- rgamma(n = nRoutes * nYears, shape = nuCount/2, rate = nuCount/2)
    epsCount <- epsCount / sqrt(V)
  }
  epsRoute <- vector("list", nStrata)
  place <- 0
  for (s in 1:nStrata) {
    epsRoute[[s]] <- rnorm(n = routesPerStrata[s], mean = 0, sd = sdRoute[s])
    if (model %in% c("S", "Sh"))
      epsYear[ , s] <- rnorm(n = nYears, mean = 0, sd = sdYear[s])
    else {
      for (y in ((fixedyear-1):1))
        epsYear[y, s] <- rnorm(n = 1, mean = epsYear[y+1, s], sd = sdYear[s])
      for (y in ((fixedyear+1):nYears))
        epsYear[y, s] <- rnorm(n = 1, mean = epsYear[y-1, s], sd = sdYear[s])
    }
  }
  # Loop over routes
  for (i in 1:nRoutes){
    if (model %in% c("S", "Sh"))
      # Build up systematic part of the GLM including random effects
      log.expectedCount[,i] <- alphaStrat[strat[i]] + beta[strat[i]]*yr +
        epsRoute[[strat[i]]][i] + epsYear[ , strat[i]] + epsCount[(i-1)*nYears + 1:nYears] +
        epsObs[obser[ , i]] + eta * first[ , i]
    else { # model D or Dh, ignore beta
      log.expectedCount[,i] <- alphaStrat[strat[i]] +
        epsRoute[[strat[i]]][i] + epsYear[ , strat[i]] + epsCount[(i-1)*nYears + 1:nYears] +
        epsObs[obser[ , i]] + eta * first[ , i]
    }
    expectedCount[ , i] <- exp(log.expectedCount[,i])

    C[,i] <- rpois(n = nYears, lambda = expectedCount)
  }

  return(list(C = C, strat = strat, obser = obser, first = first,
              epsRoute = epsRoute, epsYear = epsYear, epsObs = epsObs,
              epsCount = epsCount, expectedCount = expectedCount,
              input = list(nStrata = nStrata, nRoutes = nRoutes, nYears = nYears,
                           routesPerStrata = routesPerStrata, year = yr,
                           alphaStrat = alphaStrat, beta = beta,
                           sdRoute = sdRoute, sdYear = sdYear, sdObs = sdObs,
                           sdCount = sdCount)))
}



###############################################################################
# Estimates population-level relative abundance from count data
###############################################################################
#' Estimates population-level relative abundance from count data
#'
#' Uses a Bayesian hierarchical model to estimate relative abundance of regional
#' populations from count-based data (e.g., Breeding Bird Survey)
#'
#' @param count_data List containing the following elements:
#' ' \describe{
#'    \item{\code{C}}{nYears by nRoutes matrix containing the observed number of individuals counted at each route in each year.}
#'    \item{\code{strat}}{Vector of length nRoutes indicating the population/region in which each route is located.}
#'    \item{\code{routesPerStrata}}{Vector of length 1 or nStrata containing the number of routes (i.e. counts) per population. If length(routesPerStrata) == 1, number of routes is identical for each population.}
#' }
#' @param ni Number of MCMC iterations. Default = 20000.
#' @param nt Thinning rate. Default = 5.
#' @param nb Number of MCMC iterations to discard as burn-in. Default = 5000.
#' @param nc Number of chains. Default = 3.
#'
#' @return \code{modelCountDataJAGS} returns an mcmc object containing posterior samples for each monitored parameter.
#
#'
#' @export
#' @example inst/examples/simCountExamples.R
#' @references
#' Cohen, E. B., J. A. Hostetler, M. T. Hallworth, C. S. Rushing, T. S. Sillett,
#' and P. P. Marra. 2018. Quantifying the strength of migratory connectivity.
#' Methods in Ecology and Evolution 9: 513-524.
#' \doi{10.1111/2041-210X.12916}
#'
#' Link, W. A. and J. R. Sauer. 2002. A hierarchical analysis of population
#' change with application to Cerulean Warblers. Ecology 83: 2832-2840.
#' \doi{10.1890/0012-9658(2002)083[2832:AHAOPC]2.0.CO;2}
#'

modelCountDataJAGS <- function (count_data, ni = 20000, nt = 5, nb = 5000, nc = 3) {
  nPops <- length(unique(count_data$strat))
  nRoutes <- dim(count_data$C)[2]
  nYears = dim(count_data$C)[1]
  if(length(count_data$routesPerStrata) == 1){
    routesPerStrata = rep(count_data$input$routesPerStrata, nPops)
  } else {
    routesPerStrata = count_data$input$routesPerStrata
  }

  # Initial values
  jags.inits <- function()list(mu = runif(1,0,2), alpha = runif(nPops, -1,1), beta1 = runif(1,-1,1),
                               tau.alpha = runif(1,0,0.1), tau.noise = runif(1,0,0.1),
                               tau.rte = runif(1,0,0.1), route = runif(nRoutes,-1,1))
  # Parameters to monitor
  params <- c("mu", "alpha", "beta1", "sd.alpha", "sd.rte", "sd.noise", "totalN", "popN", "relN")

  # Data
  jags.data <- list(C = count_data$C, nPops = length(unique(count_data$strat)), nRoutes = nRoutes,
                    routePerPop = routesPerStrata,
                    year = seq(from = 0, to = 1, length.out = nYears), nYears = nYears, pop = count_data$strat)

  file <- tempfile(fileext = ".txt")
  sink(file = file)
  cat("
    model{

    # Priors
      for(p in 1:nPops){
        alpha[p] ~ dnorm(mu, tau.alpha)
      }

      mu ~ dnorm(0, 0.01)
      tau.alpha ~ dgamma(0.001,0.001)
      sd.alpha <- 1/pow(tau.alpha, 0.5)

      for(r in 1:nRoutes){
        route[r] ~ dnorm(0, tau.rte)
      }
      tau.rte ~ dgamma(0.001, 0.001)
      sd.rte <- 1/pow(tau.rte, 0.5)

      tau.noise  ~ dgamma(0.001, 0.001)
      sd.noise  <-  1/pow(tau.noise,0.5)

      beta1 ~ dnorm(0, 0.01)

    # Likelihood
     for(i in 1:nYears){
      eps[i] ~ dnorm(0, tau.noise)
      for(j in 1:nRoutes){
        C[i,j] ~ dpois(lambda[i,j])
        log(lambda[i,j]) <- alpha[pop[j]] + beta1*year[i] + route[j] + eps[i]
      }
     }

    # Derived parameters
      totalN <- sum(popN[1:nPops])

      for(i in 1:nPops){
        popN[i] <- exp(alpha[i] + beta1*nYears + eps[nYears])*routePerPop[i]
        relN[i] <- popN[i]/totalN
      }

  }")
  sink()
  out <- R2jags::jags(data = jags.data, inits = jags.inits, params,
                      file,
                      n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb,
                      progress.bar = 'none')

  file.remove(file)
  return(coda::as.mcmc(out))
}

#' Simulate geolocator (GL) migratory movement data
#'
#' @param psi Transition probabilities between B origin and W target sites.
#'    A matrix with B rows and W columns where rows sum to 1.
#' @param originRelAbund Relative abundances at B origin sites. Numeric vector
#'    of length B that sums to 1.
#' @param sampleSize List of length two. The first element is either a vector of
#'    length B with the number of simulated animals to release with geolocators
#'    at each of the B origin sites, a single integer with the total number of
#'    simulated animals to release with geolocators at origin sites (in which
#'    case, the origin sites will be sampled according to the relative
#'    abundance), or NULL if all animals are released at target sites. The
#'    second element is either a vector of length W with the number of simulated
#'    animals to release with geolocators at each of the W target sites, a
#'    single integer with the total number of simulated animals to release with
#'    geolocators at target sites (in which case, the target sites will be
#'    sampled according to their relative abundance), or NULL if all animals are
#'    released at origin sites.
#' @param originSites A polygon spatial layer (sf - MULTIPOLYGON) defining the
#'    geographic representation of sites in the origin season.
#' @param targetSites A polygon spatial layer (sf - MULTIPOLYGON) defining the
#'    geographic representation of sites in the target season.
# @param captured
#' @param geoBias Vector of length 2 indicating expected bias in longitude and
#'    latitude of animals captured and released at origin sites, in
#'    \code{targetSites} units.
#' @param geoVCov 2x2 matrix with expected variance/covariance in longitude and
#'    latitude of animals captured and released at origin sites, in
#'    \code{targetSites} units.
#' @param geoBiasOrigin Vector of length 2 indicating expected bias in longitude
#'    and latitude of animals captured and released at target sites, in
#'    \code{originSites} units.
#' @param geoVCovOrigin 2x2 matrix with expected variance/covariance in
#'    longitude and latitude of animals captured and released at target sites,
#'    in \code{originSites} units.
#' @param S Survival probabilities of released geolocator animals. Either a
#'    matrix with B rows and W columns (if survival depends on both origin site
#'    and target site), a vector of length W (if survival depends only on target
#'    site), or a single number (if survival is the same for all animals).
#'    Default 1 (all animals with geolocators survive a year).
#' @param p Recapture probabilities of released geolocator animals; list of
#'    length two. The first element is either a vector of length B (if recapture
#'    depends on origin site), or a single number (if recapture is the same for
#'    all animals released on origin sites). The second element is either a
#'    vector of length W (if recapture depends on target site), or a single
#'    number (if recapture is the same for all animals released on target
#'    sites). Default list(1, 1) (all animals that survive are recaptured).
#' @param requireEveryOrigin If TRUE, the function will throw an error if it
#'    looks like at least one origin site has no animals released in or
#'    migrating to it, or if it can, keep simulating until representation is
#'    met. This helps estTransition or estMC not throw an error. Default FALSE.
#' @return \code{simGLData} returns a list with the elements:
#' \describe{
#'   \item{\code{originAssignment}}{Vector with true origin site of each animal}
#'   \item{\code{targetAssignment}}{Vector with true target site of each animal}
#'   \item{\code{originPointsTrue}}{True origin location of each animal, type sf,
#'    same projection as originSites}
#'   \item{\code{targetPointsTrue}}{True target location of each animal, type sf,
#'    same projection as targetSites}
#'   \item{\code{originPointsObs}}{Observed origin location of each animal that
#'    survived and was recaptured, type sf, same projection as originSites. Same
#'    as originPointsTrue for animals captured at origin sites when S and p==1}
#'   \item{\code{targetPointsObs}}{Observed target location of each animal that
#'    survived and was recaptured, type sf, same projection as targetSites. Same
#'    as targetPointsTrue for animals captured at target sites when S and p==1}
#'   \item{\code{lived}}{0/1 vector for each animal, indicating which survived}
#'   \item{\code{recaptured}}{0/1 vector for each animal, indicating which were
#'    recaptured}
#'   \item{\code{input}}{List containing the inputs to function}
#' }

#' @export
#'
# @examples
simGLData <- function(psi, originRelAbund = NULL, sampleSize,
                  originSites = NULL, targetSites = NULL,
                  #captured = "origin",
                  geoBias = NULL, geoVCov = NULL,
                  geoBiasOrigin = geoBias, geoVCovOrigin = geoVCov,
                  S = 1, p = list(1, 1),
                  requireEveryOrigin = FALSE) {
  nOriginSites <- nrow(psi)
  nTargetSites <- ncol(psi)
  if (!is.null(originRelAbund)) {
    rev <- reversePsiRelAbund(psi, originRelAbund)
    gamma <- rev$gamma
    targetRelAbund <- rev$targetRelAbund
  }
  else if (!is.null(sampleSize[[2]]) || length(sampleSize[[1]]) < 2)
    stop("Need to enter in originRelAbund for target data or for single origin sample size")
  if (length(dim(S))<2) {
    S <- matrix(S, nOriginSites, nTargetSites, byrow = TRUE)
  }
  if (length(p[[1]]==1))
    p[[1]] <- rep(p[[1]], nOriginSites)
  if (length(p[[2]]==1))
    p[[2]] <- rep(p[[2]], nTargetSites)
  nAnimals <- sum(sampleSize[[1]]) + sum(sampleSize[[2]])
  captured <- rep(c("origin", "target"),
                  c(sum(sampleSize[[1]]), sum(sampleSize[[2]])))
  # if (length(captured)==1)
  #   captured <- rep(captured, nAnimals)
  targetAssignment <- rep(NA, nAnimals)
  originAssignment <- rep(NA, nAnimals)
  lived <- rep(1, nAnimals)
  recaptured <- rep(1, nAnimals)
  if (length(sampleSize[[1]])>1){
    originAssignment[captured=="origin"] <- rep(1:nOriginSites, sampleSize[[1]])
    if (requireEveryOrigin && is.null(sampleSize[[2]])){
      if (any(sampleSize[[1]] < 1))
        stop("Some origin site or sites have no samples ", sampleSize[[1]])
    }
  }
  if (length(sampleSize[[2]])>1){
    targetAssignment[captured=="target"] <- rep(1:nTargetSites, sampleSize[[2]])
  }

  runWell <- FALSE
  while (!runWell){
    for (a in 1:nAnimals) {
      if (captured[a]=="origin") {
        if (is.na(originAssignment[a]))
          originAssignment[a] <- sample.int(nOriginSites, 1, prob = originRelAbund)
        targetAssignment[a] <- sample.int(nTargetSites, 1, prob = psi[originAssignment[a], ])
        lived[a] <- rbinom(1, 1, S[originAssignment[a], targetAssignment[a]])
        recaptured[a] <- rbinom(1, 1, lived[a] * p[[1]][originAssignment[a]])
      }
      else {
        if (is.na(targetAssignment[a]))
          targetAssignment[a] <- sample.int(nTargetSites, 1, prob = targetRelAbund)
        originAssignment[a] <- sample.int(nOriginSites, 1, prob = gamma[targetAssignment[a], ])
        lived[a] <- rbinom(1, 1, S[originAssignment[a], targetAssignment[a]])
        recaptured[a] <- rbinom(1, 1, lived[a] * p[[2]][targetAssignment[a]])
      }
    }
    oa1 <- sort(unique(originAssignment))
    runWell <- !requireEveryOrigin || any(captured=="target") ||
      isTRUE(all.equal(oa1, 1:nOriginSites))
  }


  oaTest <- list(1:2); taTest <- list(2:3)
  while (any(lengths(oaTest)>1) || any(lengths(taTest)>1)) {
    originPointsTrue <- randomPoints(originSites, originAssignment)
    targetPointsTrue <- randomPoints(targetSites, targetAssignment)
    originPointsObs <- array(NA, c(sum(recaptured), 2),
                             dimnames = list(NULL, c("x","y")))
    targetPointsObs <- array(NA, c(sum(recaptured), 2),
                             dimnames = list(NULL, c("x","y")))
    linkerOrigin <- which(recaptured == 1) %in%
      which(captured=="origin" & recaptured == 1)
    linkerTarget <- which(recaptured == 1) %in%
      which(captured=="target" & recaptured == 1)
    if (any(captured=="origin" & recaptured == 1)) {
      geoBias2 <- array(rep(geoBias, sum(captured=="origin" & recaptured == 1)),
                        c(2, sum(captured=="origin" & recaptured == 1)))
      targetPointsObs[linkerOrigin, ] <-
        t(array(apply(sf::st_coordinates(targetPointsTrue)[captured=="origin" & recaptured == 1, , drop = FALSE], 1,
                      MASS::mvrnorm, n=1, Sigma=geoVCov),
                c(2, sum(captured=="origin" & recaptured == 1))) + geoBias2)
      originPointsObs[linkerOrigin, ] <-
        sf::st_coordinates(originPointsTrue)[captured=="origin" & recaptured == 1, ,
                                             drop = FALSE]
    }
    if (any(captured == "target" & recaptured == 1)) {
      geoBias2 <- array(rep(geoBiasOrigin, sum(captured == "target" & recaptured == 1)),
                        c(2, sum(captured == "target" & recaptured == 1)))
      originPointsObs[linkerTarget, ] <-
        t(array(apply(sf::st_coordinates(originPointsTrue)[captured == "target" & recaptured == 1, , drop = FALSE], 1,
                      MASS::mvrnorm, n=1, Sigma=geoVCovOrigin),
                c(2, sum(captured == "target" & recaptured == 1))) + geoBias2)
      targetPointsObs[linkerTarget, ] <-
        sf::st_coordinates(targetPointsTrue)[captured=="target" & recaptured == 1, ,
                                             drop = FALSE]
    }
    targetPointsObs <- sf::st_as_sf(data.frame(targetPointsObs),
                                    coords = c("x","y"),
                                    crs = sf::st_crs(targetSites))
    originPointsObs <- sf::st_as_sf(data.frame(originPointsObs),
                                    coords = c("x","y"),
                                    crs = sf::st_crs(originSites))
    oaTest <- suppressMessages(unclass(sf::st_intersects(x = originPointsObs,
                                                         y = originSites,
                                                         sparse = TRUE)))
    taTest <- suppressMessages(unclass(sf::st_intersects(x = targetPointsObs,
                                                         y = targetSites,
                                                         sparse = TRUE)))
  }
  return(list(originAssignment = originAssignment,
              targetAssignment = targetAssignment,
              originPointsTrue = originPointsTrue,
              targetPointsTrue = targetPointsTrue,
              originPointsObs = originPointsObs,
              targetPointsObs = targetPointsObs,
              lived = lived,
              recaptured = recaptured,
              input = list(psi = psi, originRelAbund = originRelAbund,
                           originSites = originSites,
                           targetSites = targetSites,
                           captured = captured,
                           geoBias = geoBias, geoVCov = geoVCov,
                           geoBiasOrigin = geoBiasOrigin,
                           geoVCovOrigin = geoVCovOrigin,
                           S = S, p = p)))
}

#' Simulate telemetry/GPS data
#'
#' @param psi Transition probabilities between B origin and W target sites.
#'  A matrix with B rows and W columns where rows sum to 1.
#' @param sampleSize If captured is "origin", either a vector of
#'  length B with the number of simulated animals to release with geolocators
#'  at each of the B origin sites or a single integer with the total number of
#'  simulated animals to release with GPS at origin sites (in which
#'  case, the origin sites will be sampled according to the relative
#'  abundance). If captured is "target", either a vector of length W with the
#'  number of simulated animals to release with GPS at each of the W target
#'  sites or a single integer with the total number of simulated animals to
#'  release at target sites (in which case, the target sites will be
#'  sampled according to their relative abundance).
#' @param originRelAbund Relative abundances at B origin sites. Numeric vector
#'  of length B that sums to 1. Optional unless providing target data and/or
#'  sample size of length 1.
#' @param originSites A polygon spatial layer (sf - MULTIPOLYGON) defining the
#'  geographic representation of sites in the origin season. If left NULL, the
#'  simulation won't provide origin points.
#' @param targetSites A polygon spatial layer (sf - MULTIPOLYGON) defining the
#'  geographic representation of sites in the target season. If left NULL, the
#'  simulation won't provide target points.
#' @param captured Either "origin" (the default) or "target".
#' @param S Survival probabilities of released animals. Probably only
#'  relevant for simulating archival tags. Either a matrix with B rows and W
#'  columns (if survival depends on both origin site and target site), a vector
#'  of length W (if survival depends only on target site), or a single number
#'  (if survival is the same for all animals). Default 1 (all tagged animals
#'  survive a year).
#' @param p Recapture probabilities of released animals. Only relevant for
#'  simulating archival tags. Either a vector of length B (if captured on origin
#'  and recapture depends on origin site), a vector of length W (if captured on
#'  target and recapture depends on target site), or a single number (if
#'  recapture is the same for all animals). Default 1 (all animals that survive
#'  are recaptured).
#' @param requireEveryOrigin If TRUE, the function will throw an error if it
#'    looks like at least one origin site has no animals released in or
#'    migrating to it, or if it can, keep simulating until representation is
#'    met. This helps estTransition not throw an error. Default FALSE.
#' @return \code{simTelemetryData} returns a list with the elements:
#' \describe{
#'   \item{\code{originAssignment}}{Vector with true origin site of each animal}
#'   \item{\code{targetAssignment}}{Vector with true target site of each animal}
#'   \item{\code{originPointsTrue}}{True origin location of each animal, type sf,
#'    same projection as originSites}
#'   \item{\code{targetPointsTrue}}{True target location of each animal, type sf,
#'    same projection as targetSites}
#'   \item{\code{originPointsObs}}{Observed origin location of each animal that
#'    survived and was recaptured, type sf, same projection as originSites. Same
#'    as originPointsTrue when S and p==1}
#'   \item{\code{targetPointsObs}}{Observed target location of each animal that
#'    survived and was recaptured, type sf, same projection as targetSites. Same
#'    as targetPointsTrue when S and p==1}
#'   \item{\code{lived}}{0/1 vector for each animal, indicating which survived}
#'   \item{\code{recaptured}}{0/1 vector for each animal, indicating which were
#'    recaptured}
#'   \item{\code{input}}{List containing the inputs to function}
#' }

#' @export
#'
# @examples
simTelemetryData <- function(psi, sampleSize, originRelAbund = NULL,
                      originSites = NULL, targetSites = NULL,
                      captured = "origin",
                      S = 1, p = 1,
                      requireEveryOrigin = FALSE) {
  nOriginSites <- nrow(psi)
  nTargetSites <- ncol(psi)
  if (!is.null(originRelAbund)) {
    rev <- reversePsiRelAbund(psi, originRelAbund)
    gamma <- rev$gamma
    targetRelAbund <- rev$targetRelAbund
  }
  else if (captured != "origin" || length(sampleSize) < 2)
    stop("Need to enter in originRelAbund for target data or for single sample size")
  if (length(dim(S))<2) {
    S <- matrix(S, nOriginSites, nTargetSites, byrow = TRUE)
  }
  if (length(p==1)){
    if (captured=="origin")
      p <- rep(p, nOriginSites)
    else
      p <- rep(p, nTargetSites)
  }
  nAnimals <- sum(sampleSize)
  targetAssignment <- rep(NA, nAnimals)
  originAssignment <- rep(NA, nAnimals)
  lived <- rep(1, nAnimals)
  recaptured <- rep(1, nAnimals)
  if (length(sampleSize)>1 && captured=="origin"){
    originAssignment <- rep(1:nOriginSites, sampleSize)
    if (requireEveryOrigin){
      if (any(sampleSize < 1))
        stop("Some origin site or sites have no samples ", sampleSize)
    }
  }
  else if (length(sampleSize)>1 && captured=="origin"){
    targetAssignment <- rep(1:nTargetSites, sampleSize)
  }

  runWell <- FALSE
  while (!runWell){
    for (a in 1:nAnimals) {
      if (captured=="origin") {
        if (is.na(originAssignment[a]))
          originAssignment[a] <- sample.int(nOriginSites, 1, prob = originRelAbund)
        targetAssignment[a] <- sample.int(nTargetSites, 1, prob = psi[originAssignment[a], ])
        lived[a] <- rbinom(1, 1, S[originAssignment[a], targetAssignment[a]])
        recaptured[a] <- rbinom(1, 1, lived[a] * p[originAssignment[a]])
      }
      else {
        if (is.na(targetAssignment[a]))
          targetAssignment[a] <- sample.int(nTargetSites, 1, prob = targetRelAbund)
        originAssignment[a] <- sample.int(nOriginSites, 1, prob = gamma[targetAssignment[a], ])
        lived[a] <- rbinom(1, 1, S[originAssignment[a], targetAssignment[a]])
        recaptured[a] <- rbinom(1, 1, lived[a] * p[targetAssignment[a]])
      }
    }
    oa1 <- sort(unique(originAssignment))
    runWell <- !requireEveryOrigin || (captured=="target") ||
      isTRUE(all.equal(oa1, 1:nOriginSites))
  }

  if (!is.null(originSites))
    originPointsTrue <- randomPoints(originSites, originAssignment)
  else
    originPointsTrue <- NULL
  if (!is.null(originSites))
    targetPointsTrue <- randomPoints(targetSites, targetAssignment)
  else
    targetPointsTrue <- NULL

  return(list(originAssignment = originAssignment,
              targetAssignment = targetAssignment,
              originPointsTrue = originPointsTrue,
              targetPointsTrue = targetPointsTrue,
              originPointsObs = originPointsTrue[recaptured==1, ],
              targetPointsObs = targetPointsTrue[recaptured==1, ],
              lived = lived,
              recaptured = recaptured,
              input = list(psi = psi, originRelAbund = originRelAbund,
                           originSites = originSites,
                           targetSites = targetSites,
                           captured = captured,
                           S = S, p = p)))
}


#' Simulate Dirichlet-based probability table data
#'
#' @param psi Transition probabilities between B origin sites and W target
#'  sites. B by W matrix
#' @param originRelAbund Vector of relative abundances at B origin sites
#' @param sampleSize Either the total number of data points to simulate or a
#'  vector with the number at each target or origin site. If only the total is
#'  provided, sampling will be done in proportion to abundance
#' @param shapes If captured == "target", a B by B matrix, each row of which is
#'  the shape parameters for the Dirichlet distribution of an animal whose true
#'  origin assignment is that row's. If captured == "origin", a W by W matrix,
#'  each row of which is the shape parameters for the Dirichlet distribution of
#'  an animal whose true target assignment is that row's.
#' @param captured Either "target" (the default) or "origin", indicating which
#'  side animal data were collected on
#' @param requireEveryOrigin If TRUE, the function will throw an error if it
#'    looks like at least one origin site has no animals released in or
#'    migrating to it, or if it can, keep simulating until representation is
#'    met. This helps estTransition or estMC not throw an error. Default FALSE
#'
#' @return \code{simProbData} returns a list with the elements:
#' \describe{
#'   \item{\code{originAssignment}}{Vector with true origin site of each animal}
#'   \item{\code{targetAssignment}}{Vector with true target site of each animal}
#'   \item{\code{genProbs}}{Table of assignment site probabilities for each
#'    animal}
#'   \item{\code{input}}{List containing the inputs to function}
#' }

#' @export
#'
# @examples
simProbData <- function(psi,
                        originRelAbund,
                        sampleSize,
                        shapes,
                        captured = "target",
                        requireEveryOrigin = FALSE) {
  nOriginSites <- nrow(psi)
  nTargetSites <- ncol(psi)
  rev <- reversePsiRelAbund(psi, originRelAbund)
  gamma <- rev$gamma
  targetRelAbund <- rev$targetRelAbund
  nAnimals <- sum(sampleSize)
  if (length(captured)>1)
    captured <- captured[1]
  targetAssignment <- rep(NA, nAnimals)
  originAssignment <- rep(NA, nAnimals)
  if (captured=="origin" && length(sampleSize)>1){
    originAssignment <- rep(1:nOriginSites, sampleSize)
    if (requireEveryOrigin){
      if (any(sampleSize < 1))
        stop("Some origin site or sites have no samples ", sampleSize)
    }
  }
  if (captured=="target" && length(sampleSize)>1){
    targetAssignment <- rep(1:nTargetSites, sampleSize)
  }

  runWell <- FALSE
  while (!runWell){
    for (a in 1:nAnimals) {
      if (captured=="origin") {
        if (is.na(originAssignment[a]))
          originAssignment[a] <- sample.int(nOriginSites, 1, prob = originRelAbund)
        targetAssignment[a] <- sample.int(nTargetSites, 1, prob = psi[originAssignment[a], ])
      }
      else {
        if (is.na(targetAssignment[a]))
          targetAssignment[a] <- sample.int(nTargetSites, 1, prob = targetRelAbund)
        originAssignment[a] <- sample.int(nOriginSites, 1, prob = gamma[targetAssignment[a], ])
      }
    }
    runWell <- !requireEveryOrigin || captured=="target" ||
      all.equal(unique(originAssignment), 1:nOriginSites)
  }

  if (captured == "target") {
    genProbs <- array(NA, c(nAnimals, nOriginSites))
    for (a in 1:nAnimals) {
      genProbs[a, ] <- VGAM::rdiric(1, shapes[originAssignment[a], ])
    }
  }
  else {
    genProbs <- array(NA, c(nAnimals, nTargetSites))
    for (a in 1:nAnimals) {
      genProbs[a, ] <- VGAM::rdiric(1, shapes[targetAssignment[a], ])
    }
  }

  return(list(originAssignment = originAssignment,
              targetAssignment = targetAssignment,
              genProbs = genProbs,
              input = list(psi = psi,
                           originRelAbund = originRelAbund,
                           captured = captured,
                           shapes = shapes)))
}

#' Simulate capture-mark-reencounter (CMR) migratory movement data
#'
#' @param psi Transition probabilities between B origin sites and W target
#'  sites. B by W matrix
#' @param banded A vector of the number of released animals from each origin
#'  site (including those never reencountered in a target site). Length B
#' @param r A vector (length W) of reencounter probabilities at each target site
#'
#' @return \code{simCMRData} returns a list with the elements:
#' \describe{
#'   \item{\code{reencountered}}{B by W matrix with numbers reencountered at
#'    each target site, by origin site}
#'   \item{\code{migrated}}{B by W matrix with numbers migrated to
#'    each target site, by origin site. Assumes survival to arrival is 1}
#'   \item{\code{input}}{List containing the inputs to function}
#' }

#' @export
#'
#' @example inst/examples/simCMRExamples2.R
simCMRData <- function(psi, banded, r) {
  moved <- reencountered <- array(0, dim(psi), dimnames = dimnames(psi))
  nOriginSites <- nrow(psi)
  nTargetSites <- nrow(psi)
  for (i in 1:nOriginSites) {
    moved[i, ] <- stats::rmultinom(1, banded[i], psi[i, ])
    for (j in 1:nTargetSites) {
      reencountered[i,j] <- stats::rbinom(1, moved[i,j], r[j])
    }
  }
  return(list(reencountered = reencountered,
              migrated = moved,
              input = list(psi = psi, banded = banded, r = r)))
}

Try the MigConnectivity package in your browser

Any scripts or data that you put into this service are public.

MigConnectivity documentation built on May 29, 2024, 8:37 a.m.