inst/examples/estTransitionExamples.R

\donttest{
  ##############################################################################
  # Examples 1 (banding data: first example is based on common tern banding
  #   data; the second is made up data to demonstrate data with two ages)
  ##############################################################################
  COTE_banded <- c(10360, 1787, 2495, 336)
  COTE_reencountered <- matrix(c(12, 0, 38, 15,
                                 111, 7, 6, 2,
                                 5, 0, 19, 4,
                                 1123, 40, 41, 7),
                               4, 4,
                               dimnames = list(LETTERS[1:4], 1:4))
  COTE_psi <- estTransition(originNames = LETTERS[1:4],
                            targetNames = 1:4,
                            banded = COTE_banded,
                            reencountered = COTE_reencountered,
                            verbose = 1,
                            nSamples = 60000, nBurnin = 20000,
                            method = "MCMC")
  COTE_psi

  COTE_banded2 <- matrix(rep(COTE_banded, 2), 4, 2)
  COTE_reencountered2 <- array(c(12, 0, 38, 15, 6, 0, 17, 7,
                                 111, 7, 6, 2, 55, 3, 3, 1,
                                 5, 0, 19, 4, 2, 0, 10, 2,
                                 1123, 40, 41, 7, 660, 20, 20, 3),
                               c(4, 2, 4),
                               dimnames = list(LETTERS[1:4], c("J", "A"), 1:4))
  COTE_psi2 <- estTransition(originNames = LETTERS[1:4],
                            targetNames = 1:4,
                            banded = COTE_banded2,
                            reencountered = COTE_reencountered2,
                            verbose = 0,
                            nSamples = 60000, nBurnin = 20000,
                            method = "MCMC")
  COTE_psi2

  ##############################################################################
  # Example 2 (geolocator and telemetry ovenbirds captured on origin sites)
  ##############################################################################
  data(OVENdata) # Ovenbird

  nSamplesGLGPS <- 100 # Number of bootstrap iterations

  # Estimate transition probabilities; treat all data as geolocator
  GL_psi <- estTransition(isGL=TRUE,
                          geoBias = OVENdata$geo.bias,
                          geoVCov = OVENdata$geo.vcov,
                          targetSites = OVENdata$targetSites,
                          originSites = OVENdata$originSites,
                          originPoints = OVENdata$originPoints,
                          targetPoints = OVENdata$targetPoints,
                          verbose = 2,
                          nSamples = nSamplesGLGPS,
                          resampleProjection=sf::st_crs(OVENdata$targetPoints))

  # Treat all data as is
  Combined.psi <- estTransition(isGL=OVENdata$isGL,
                          isTelemetry = !OVENdata$isGL,
                  geoBias = OVENdata$geo.bias, # Light-level GL location bias
                  geoVCov = OVENdata$geo.vcov, # Location covariance matrix
                  targetSites = OVENdata$targetSites, # Nonbreeding/target sites
                  originSites = OVENdata$originSites, # Breeding/origin sites
                  originPoints = OVENdata$originPoints, # Capture Locations
                  targetPoints = OVENdata$targetPoints, #Device target locations
                  verbose = 2,   # output options
                  nSamples = nSamplesGLGPS, # This is set low for example
                  resampleProjection = sf::st_crs(OVENdata$targetPoints))

  print(Combined.psi)

  # For treating all data as GPS,
  # Move the latitude of birds with locations that fall offshore
  int <- sf::st_intersects(OVENdata$targetPoints, OVENdata$targetSites)
  any(lengths(int)<1)
  plot(OVENdata$targetPoints)
  plot(OVENdata$targetSites,add=TRUE)
  tp<-sf::st_coordinates(OVENdata$targetPoints)
  text(tp[,1], tp[,2], label=c(1:39))

  tp[5,2] <- 2450000
  tp[10,2]<- 2240496
  tp[1,2]<- 2240496
  tp[11,2]<- 2026511
  tp[15,2]<- 2031268
  tp[16,2]<- 2031268

  oven_targetPoints<-sf::st_as_sf(as.data.frame(tp),
                                  coords = c("X","Y"),
                                  crs = sf::st_crs(OVENdata$targetPoints))
  inter <- sf::st_intersects(oven_targetPoints, OVENdata$targetSites)
  any(lengths(inter)<1)
  plot(oven_targetPoints,add=TRUE, col = "green")
  plot(oven_targetPoints[lengths(inter)<1,],add=TRUE, col = "darkblue")

  # Treat all data as GPS
  GPS_psi <- estTransition(isTelemetry = TRUE,
                targetSites = OVENdata$targetSites, # Non-breeding/target sites
                originSites = OVENdata$originSites, # Breeding/origin sites
                originPoints = OVENdata$originPoints, # Capture Locations
                targetPoints = oven_targetPoints, # Device target locations
                verbose = 2,   # output options
                nSamples = nSamplesGLGPS) # This is set low for example



  ##############################################################################
  # Example 3 (all released origin; some telemetry, some GL, some probability
  # tables, some both GL and probability tables; data modified from ovenbird
  # example)
  ##############################################################################
  library(VGAM)
  nAnimals <- 40
  isGL <- c(OVENdata$isGL, FALSE)
  isTelemetry <- c(!OVENdata$isGL, FALSE)
  isRaster <- rep(FALSE, nAnimals)
  isProb <- rep(FALSE, nAnimals)
  targetPoints <- rbind(OVENdata$targetPoints, OVENdata$targetPoints[1,])
  targetSites <- OVENdata$targetSites
  originSites <- OVENdata$originSites
  resampleProjection <- sf::st_crs(OVENdata$targetPoints)
  targetNames <- OVENdata$targetNames
  originNames <- OVENdata$originNames
  targetAssignment <- array(0, dim = c(nAnimals, 3),
                            dimnames = list(NULL, targetNames))
  assignment0 <- unclass(sf::st_intersects(x = targetPoints, y = targetSites,
                                           sparse = TRUE))
  assignment0[sapply(assignment0, function(x) length(x)==0)] <- 0
  assignment0 <- array(unlist(assignment0), nAnimals)
  for (ani in 1:nAnimals) {
    if (assignment0[ani]>0)
      targetAssignment[ani, assignment0[ani]] <- 1
    else{
      targetAssignment[ani, ] <- rdiric(1, c(15, 1, 1))
      isProb[ani] <- TRUE
    }
  }
  targetAssignment
  isProb
  nSamplesTry <- 100 # Number of bootstrap iterations
  originPoints <- rbind(OVENdata$originPoints,
                        OVENdata$originPoints[39,])
  system.time(psi3 <-
                estTransition(isGL = isGL, isRaster = isRaster,
                              isProb = isProb,
                              isTelemetry = isTelemetry,
                              geoBias = OVENdata$geo.bias,
                              geoVCov = OVENdata$geo.vcov,
                              targetPoints = targetPoints,
                              targetAssignment = targetAssignment,
                              targetSites = targetSites,
                              resampleProjection = resampleProjection,
                              nSim = 20000, maxTries = 300,
                              originSites = originSites,
                              originPoints = originPoints,
                              captured = "origin",
                              originNames = OVENdata$originNames,
                              targetNames = OVENdata$targetNames,
                              verbose = 3,
                              nSamples = nSamplesTry))
  psi3

  nNonBreeding <- nrow(OVENdata$targetSites)

  plot(psi3, legend = "top",
       main = paste("OVENlike w/", sum(isGL & !isProb), "GL,",
                    sum(!isGL & isProb), "probs,",
                    sum(isGL & isProb), "both, and", sum(isTelemetry), "GPS"))

  ##############################################################################
  # Example 4 (add probability animals released on other end)
  ##############################################################################
  nAnimals <- 45
  captured <- rep(c("origin", "target"), c(40, 5))
  isGL <- c(OVENdata$isGL, rep(FALSE, 6))
  isTelemetry <- c(!OVENdata$isGL, rep(FALSE, 6))
  isRaster <- rep(FALSE, nAnimals)
  isProb <- rep(FALSE, nAnimals)
  targetPoints <- rbind(OVENdata$targetPoints,
                        OVENdata$targetPoints[c(1:3,19,23,31),])
  targetAssignment <- array(0, dim = c(nAnimals, 3),
                            dimnames = list(NULL, targetNames))
  assignment0 <- unclass(sf::st_intersects(x = targetPoints, y = targetSites,
                                           sparse = TRUE))
  assignment0[sapply(assignment0, function(x) length(x)==0)] <- 0
  assignment0 <- array(unlist(assignment0), nAnimals)
  for (ani in 1:nAnimals) {
    if (assignment0[ani]>0)
      targetAssignment[ani, assignment0[ani]] <- 1
    else{
      targetAssignment[ani, ] <- rdiric(1, c(15, 1, 1))
      isProb[ani] <- TRUE
    }
  }
  targetAssignment
  isProb
  originPoints <- rbind(OVENdata$originPoints,
                        OVENdata$originPoints[34:39,])

  originPoints <- sf::st_transform(originPoints, crs = resampleProjection)
  originSites <- sf::st_transform(OVENdata$originSites,
                                  crs = resampleProjection)

  assignment1 <- unclass(sf::st_intersects(x = originPoints, y = originSites,
                                           sparse = TRUE))
  assignment1[sapply(assignment1, function(x) length(x)==0)] <- 0
  assignment1 <- array(unlist(assignment1), nAnimals)

  nOriginSites <- nrow(originSites)

  originAssignment <- array(0, dim = c(nAnimals, nOriginSites),
                            dimnames = list(NULL, originNames))
  for (ani in 1:40) {
    originAssignment[ani, assignment1[ani]] <- 1
  }
  for (ani in 41:nAnimals) {
    originAssignment[ani, ] <- rdiric(1, c(1, 1))
    isProb[ani] <- TRUE
  }
  originAssignment
  isProb
  system.time(psi4 <-
                estTransition(isGL = isGL, isRaster = isRaster,
                              isProb = isProb,
                              isTelemetry = isTelemetry,
                              geoBias = OVENdata$geo.bias,
                              geoVCov = OVENdata$geo.vcov,
                              targetPoints = targetPoints,
                              targetAssignment = targetAssignment,
                              targetSites = targetSites,
                              resampleProjection = resampleProjection,
                              nSim = 15000, maxTries = 300,
                              originSites = originSites,
                              originAssignment = originAssignment,
                              captured = captured,
                              originNames = OVENdata$originNames,
                              targetNames = OVENdata$targetNames,
                              verbose = 2,
                              nSamples = nSamplesTry,
                              targetRelAbund = c(0.1432, 0.3577, 0.4991)))
  psi4

  plot(psi4, legend = "top",
       main = paste(sum(isGL & !isProb), "GL,",
                    sum(!isGL & isProb & captured == "origin"), "prob.,",
                    sum(isGL & isProb), "both,",
                    sum(isTelemetry), "GPS (all\ncaptured origin), and",
                    sum(isProb & captured == "target"),
                    "prob. (captured target)"))
  MC4 <- estStrength(OVENdata$originDist, OVENdata$targetDist,
                                       OVENdata$originRelAbund, psi4,
                                       sampleSize = nAnimals)
  MC4

  ##############################################################################
  # Example 5 (all raster, from our OVEN example)
  ##############################################################################
  getCSV <- function(filename) {
    tmp <- tempdir()
    url1 <- paste0(
      'https://github.com/SMBC-NZP/MigConnectivity/blob/master/data-raw/',
                   filename, '?raw=true')
    temp <- paste(tmp, filename, sep = '/')
    utils::download.file(url1, temp, mode = 'wb')
    csv <- read.csv(temp)
    unlink(temp)
    return(csv)

  }

  getRDS <- function(speciesDist) {
    tmp <- tempdir()
    extension <- '.rds'
    filename <- paste0(speciesDist, extension)
    url1 <- paste0(
      'https://github.com/SMBC-NZP/MigConnectivity/blob/master/data-raw/Spatial_Layers/',
                   filename, '?raw=true')
    temp <- paste(tmp, filename, sep = '/')
    utils::download.file(url1, temp, mode = 'wb')
    shp <- readRDS(temp)
    unlink(temp)
    return(shp)
  }
  OVENdist <- getRDS("OVENdist")

  OVENdist <- sf::st_as_sf(OVENdist)

  OVENdist <- sf::st_transform(OVENdist, 4326)

  OVENvals <- getCSV("deltaDvalues.csv")

  OVENvals <- OVENvals[grep(x=OVENvals$Sample,"NH", invert = TRUE),]

  originSites <- getRDS("originSites")
  originSites <- sf::st_as_sf(originSites)

  EVER <- length(grep(x=OVENvals$Sample,"EVER"))
  JAM <- length(grep(x=OVENvals$Sample,"JAM"))

  originRelAbund <- matrix(c(EVER,JAM),nrow = 1,byrow = TRUE)
  originRelAbund <- prop.table(originRelAbund,1)

  op <- sf::st_centroid(originSites)

  originPoints <- array(NA,c(EVER+JAM,2), list(NULL, c("x","y")))
  originPoints[grep(x = OVENvals$Sample,"JAM"),1] <- sf::st_coordinates(op)[1,1]
  originPoints[grep(x = OVENvals$Sample,"JAM"),2] <- sf::st_coordinates(op)[1,2]
  originPoints[grep(x = OVENvals$Sample,"EVER"),1]<-sf::st_coordinates(op)[2,1]
  originPoints[grep(x = OVENvals$Sample,"EVER"),2]<-sf::st_coordinates(op)[2,2]

  originPoints <- sf::st_as_sf(data.frame(originPoints),
                               coords = c("x", "y"),
                               crs = sf::st_crs(originSites))

  iso <- isoAssign(isovalues = OVENvals[,2],
                   isoSTD = 12,       # this value is for demonstration only
                   intercept = -10,   # this value is for demonstration only
                   slope = 0.8,       # this value is for demonstration only
                   odds = NULL,
                   restrict2Likely = FALSE,
                   nSamples = 1000,
                   sppShapefile = terra::vect(OVENdist),
                   assignExtent = c(-179,-60,15,89),
                   element = "Hydrogen",
                   period = "GrowingSeason",#this setting for demonstration only
                   seed = 12345,
                   verbose=1)


  nAnimals <- dim(iso$probassign)[3]
  isGL <-rep(FALSE, nAnimals); isRaster <- rep(TRUE, nAnimals)
  isProb <- rep(FALSE, nAnimals); isTelemetry <- rep(FALSE, nAnimals)
  targetSites <- sf::st_as_sf(iso$targetSites)
  targetSites <- sf::st_make_valid(targetSites)
  targetSites <- sf::st_union(targetSites, by_feature = TRUE)


  system.time(psi5 <-
                estTransition(isGL = isGL,
                              isRaster = isRaster,
                              isProb = isProb,
                              isTelemetry = isTelemetry,
                              targetSites = targetSites,
                              resampleProjection = resampleProjection,
                              targetRaster = iso,
                              originSites = originSites,
                              originPoints = originPoints,
                              captured = rep("origin", nAnimals),
                              verbose = 2,
                              nSamples = nSamplesTry))
  psi5
}

Try the MigConnectivity package in your browser

Any scripts or data that you put into this service are public.

MigConnectivity documentation built on May 29, 2024, 8:37 a.m.