Nothing
test_that("summariseConceptIdCount works", {
skip_on_cran()
cdm <- cdmEunomia()
expect_true(inherits(summariseConceptIdCounts(cdm, "drug_exposure"), "summarised_result"))
expect_warning(summariseConceptIdCounts(cdm, "observation_period"))
expect_no_error(x <- summariseConceptIdCounts(cdm, "visit_occurrence"))
checkResultType(x, "summarise_concept_id_counts")
expect_no_error(summariseConceptIdCounts(cdm, "condition_occurrence", countBy = c("record", "person")))
expect_no_error(summariseConceptIdCounts(cdm, "drug_exposure"))
expect_no_error(summariseConceptIdCounts(cdm, "procedure_occurrence", countBy = "person"))
expect_warning(summariseConceptIdCounts(cdm, "device_exposure"))
expect_no_error(y <- summariseConceptIdCounts(cdm, "measurement"))
expect_no_error(summariseConceptIdCounts(cdm, "observation", interval = "quarters"))
expect_warning(p <- summariseConceptIdCounts(cdm, "death"))
expect_no_error(all <- summariseConceptIdCounts(cdm, c("visit_occurrence", "measurement")))
expect_equal(all |> sortTibble(), x |> dplyr::bind_rows(y) |> sortTibble())
expect_equal(
summariseConceptIdCounts(cdm, "procedure_occurrence", countBy = "record") |>
sortTibble(),
summariseConceptIdCounts(cdm, "procedure_occurrence") |>
sortTibble()
)
expect_equal(
summariseConceptIdCounts(cdm, "procedure_occurrence", countBy = "record", interval = "overall") |>
sortTibble(),
summariseConceptIdCounts(cdm, "procedure_occurrence", countBy = "record", interval = "months") |>
omopgenerics::splitAdditional() |>
dplyr::filter(.data$time_interval == "overall") |>
omopgenerics::uniteAdditional(cols = c("time_interval", "source_concept_id", "source_concept_name")) |>
sortTibble(),
ignore_attr = TRUE
)
expect_warning(summariseConceptIdCounts(cdm, "observation_period"))
expect_error(summariseConceptIdCounts(cdm, omopTableName = ""))
expect_error(summariseConceptIdCounts(cdm, omopTableName = "visit_occurrence", countBy = "dd"))
expect_equal(settings(y)$result_type, settings(p)$result_type)
expect_true(summariseConceptIdCounts(cdm, "procedure_occurrence", sex = TRUE, ageGroup = list(c(0, 50), c(51, Inf))) |>
dplyr::distinct(.data$strata_level) |>
dplyr::tally() |>
dplyr::pull() == 9)
expect_true(summariseConceptIdCounts(cdm, "procedure_occurrence", ageGroup = list(c(0, 50))) |>
dplyr::distinct(.data$strata_level) |>
dplyr::tally() |>
dplyr::pull() == 3)
s <- summariseConceptIdCounts(cdm, "procedure_occurrence") |>
sortTibble()
z <- summariseConceptIdCounts(cdm, "procedure_occurrence", sex = TRUE, interval = "years", ageGroup = list(c(0, 50), c(51, Inf))) |>
sortTibble()
x <- z |>
omopgenerics::splitAdditional() |>
dplyr::filter(strata_level == "overall" & time_interval == "overall") |>
dplyr::select(variable_level, estimate_value)
s <- s |>
dplyr::select(variable_level, estimate_value)
expect_equal(x, s, ignore_attr = TRUE)
x <- z |>
omopgenerics::splitAdditional() |>
dplyr::filter(strata_name == "age_group" & time_interval == "overall") |>
dplyr::group_by(variable_level) |>
dplyr::summarise(estimate_value = sum(as.numeric(estimate_value), na.rm = TRUE), .groups = "drop") |>
dplyr::mutate(estimate_value = as.character(estimate_value))
p <- s |>
dplyr::select(variable_level, estimate_value)
expect_true(all.equal(
as.data.frame(x) |> dplyr::arrange(variable_level),
as.data.frame(p) |> dplyr::arrange(variable_level),
check.attributes = FALSE
))
})
test_that("dateRange argument works", {
skip_on_cran()
# Load mock database ----
cdm <- cdmEunomia()
expect_no_error(summariseConceptIdCounts(cdm, "condition_occurrence", dateRange = as.Date(c("2012-01-01", "2018-01-01"))))
expect_message(x <- summariseConceptIdCounts(cdm, "drug_exposure", dateRange = as.Date(c("2012-01-01", "2025-01-01"))))
observationRange <- cdm$observation_period |>
dplyr::summarise(
minobs = min(.data$observation_period_start_date, na.rm = TRUE),
maxobs = max(.data$observation_period_end_date, na.rm = TRUE)
)
expect_no_error(y <- summariseConceptIdCounts(cdm, "drug_exposure", dateRange = as.Date(c("2012-01-01", observationRange |> dplyr::pull("maxobs")))))
expect_equal(x |> sortTibble(), y |> sortTibble(), ignore_attr = TRUE)
expect_false(settings(x)$study_period_end == settings(y)$study_period_end)
expect_error(summariseConceptIdCounts(cdm, "drug_exposure", dateRange = as.Date(c("2015-01-01", "2014-01-01"))))
expect_warning(y <- summariseConceptIdCounts(cdm, "drug_exposure", dateRange = as.Date(c("2020-01-01", "2021-01-01"))))
expect_equal(y, omopgenerics::emptySummarisedResult(), ignore_attr = TRUE)
expect_equal(settings(y)$result_type, settings(x)$result_type)
expect_equal(colnames(settings(y)), colnames(settings(x)))
PatientProfiles::mockDisconnect(cdm = cdm)
})
test_that("sample argument works", {
skip_on_cran()
# Load mock database ----
cdm <- cdmEunomia()
expect_no_error(x <- summariseConceptIdCounts(cdm, "drug_exposure", sample = 50))
expect_no_error(y <- summariseConceptIdCounts(cdm, "drug_exposure"))
n <- cdm$drug_exposure |>
dplyr::tally() |>
dplyr::pull(n)
expect_no_error(z <- summariseConceptIdCounts(cdm, "drug_exposure", sample = n))
expect_equal(y |> sortTibble(), z |> sortTibble())
expect_equal(summariseConceptIdCounts(cdm, "drug_exposure", sample = 1) |>
dplyr::filter(.data$estimate_name == "count_records") |>
dplyr::pull(.data$estimate_value) |>
as.integer(), 1L)
PatientProfiles::mockDisconnect(cdm = cdm)
})
test_that("tableConceptIdCounts() works", {
skip_on_cran()
# Load mock database ----
cdm <- cdmEunomia()
# Check that works ----
expect_no_error(x <- tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence")))
expect_true(inherits(x, "reactable"))
expect_no_error(y <- tableConceptIdCounts(summariseConceptIdCounts(cdm, c(
"drug_exposure",
"measurement"
))))
expect_true(inherits(y, "reactable"))
expect_warning(t <- summariseConceptIdCounts(cdm, "death"))
expect_warning(inherits(tableConceptIdCounts(t), "reactable"))
expect_no_error(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "overall", type = "datatable"))
expect_no_error(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "standard", type = "datatable"))
expect_no_error(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "source", type = "datatable"))
expect_warning(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "missing source", type = "datatable"))
expect_warning(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "missing standard", type = "datatable"))
expect_no_error(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "overall", type = "reactable"))
expect_no_error(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "standard", type = "reactable"))
expect_no_error(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "source", type = "reactable"))
expect_warning(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "missing source", type = "reactable"))
expect_warning(tableConceptIdCounts(summariseConceptIdCounts(cdm, "condition_occurrence"), display = "missing standard", type = "reactable"))
PatientProfiles::mockDisconnect(cdm = cdm)
})
test_that("interval argument works", {
skip_on_cran()
# Load mock database ----
cdm <- cdmEunomia()
expect_no_error(y <- summariseConceptIdCounts(
cdm = cdm,
omopTableName = "drug_exposure",
interval = "years"
))
expect_no_error(o <- summariseConceptIdCounts(
omopTableName = "drug_exposure",
cdm = cdm,
interval = "overall"
))
expect_no_error(q <- summariseConceptIdCounts(
omopTableName = "drug_exposure",
cdm = cdm,
interval = "quarters"
))
expect_no_error(m <- summariseConceptIdCounts(
omopTableName = "drug_exposure",
cdm = cdm,
interval = "months"
))
m_quarters <- m |>
omopgenerics::splitAdditional() |>
omopgenerics::pivotEstimates() |>
dplyr::filter(time_interval != "overall") |>
dplyr::mutate(
start_date = as.Date(sub(" to .*", "", time_interval)),
quarter_start = lubridate::quarter(start_date, type = "date_first"),
quarter_end = lubridate::quarter(start_date, type = "date_last"),
quarter = paste(quarter_start, "to", quarter_end)
) |>
dplyr::select(!c("time_interval", "start_date", "quarter_start", "quarter_end")) |>
dplyr::group_by(quarter, variable_level) |>
dplyr::summarise(count_records = sum(count_records), .groups = "drop") |>
dplyr::rename("time_interval" = quarter) |>
dplyr::arrange(time_interval)
q_quarters <- q |>
omopgenerics::splitAdditional() |>
omopgenerics::pivotEstimates() |>
dplyr::filter(time_interval != "overall") |>
dplyr::select(time_interval, variable_level, count_records) |>
dplyr::arrange(time_interval)
expect_equal(m_quarters |>
sortTibble(), q_quarters |> sortTibble())
m_year <- m |>
omopgenerics::splitAdditional() |>
dplyr::filter(time_interval != "overall") |>
dplyr::mutate(
# Extract the start date
start_date = clock::date_parse(stringr::str_extract(time_interval, "^\\d{4}-\\d{2}-\\d{2}")),
# Convert start_date to a year-month-day object and extract the year
year = clock::get_year(clock::as_year_month_day(start_date))
) |>
omopgenerics::pivotEstimates() |>
dplyr::group_by(year, variable_level) |>
dplyr::summarise(
count_records = sum(count_records),
.groups = "drop"
) |>
dplyr::arrange(year)
y_year <- y |>
omopgenerics::splitAdditional() |>
dplyr::filter(time_interval != "overall") |>
dplyr::mutate(
# Extract the start date
start_date = clock::date_parse(stringr::str_extract(time_interval, "^\\d{4}-\\d{2}-\\d{2}")),
# Convert start_date to a year-month-day object and extract the year
year = clock::get_year(clock::as_year_month_day(start_date))
) |>
omopgenerics::pivotEstimates() |>
dplyr::select(year, variable_level, count_records) |>
dplyr::arrange(year)
expect_equal(m_year |> sortTibble(), y_year |> sortTibble())
o <- o |>
omopgenerics::splitAdditional() |>
omopgenerics::pivotEstimates() |>
dplyr::select(variable_level, count_records)
expect_equal(y_year |> dplyr::group_by(variable_level) |> dplyr::summarise(count_records = sum(count_records), .groups = "drop") |> sortTibble(), o |> sortTibble())
q_year <- q |>
omopgenerics::splitAdditional() |>
dplyr::filter(time_interval != "overall") |>
dplyr::mutate(
# Extract the start date
start_date = clock::date_parse(stringr::str_extract(time_interval, "^\\d{4}-\\d{2}-\\d{2}")),
# Convert start_date to a year-month-day object and extract the year
year = clock::get_year(clock::as_year_month_day(start_date))
) |>
omopgenerics::pivotEstimates() |>
dplyr::group_by(year, variable_level) |>
dplyr::summarise(
count_records = sum(count_records),
.groups = "drop"
) |>
dplyr::arrange(year)
expect_equal(q_year |> sortTibble(), y_year |> sortTibble())
PatientProfiles::mockDisconnect(cdm = cdm)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.