Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo = FALSE, eval = TRUE------------------------------------------------
PatientProfiles:::formats |>
dplyr::rename(
"Estimate name" = "estimate_name",
"Description" = "estimate_description",
"Estimate type" = "estimate_type"
) |>
dplyr::group_by(.data$variable_type) |>
gt::gt() |>
gt::tab_style(
style = gt::cell_fill(color = "#e1e1e1"),
locations = gt::cells_row_groups()
) |>
gt::tab_style(
style = list(
gt::cell_text(weight = "bold"),
gt::cell_fill("#000"),
gt::cell_text(color = "#fff")
),
locations = gt::cells_column_labels()
) |>
gt::tab_style(
style = gt::cell_text(font = "consolas"),
locations = gt::cells_body(columns = "Estimate name")
)
## ----echo = FALSE-------------------------------------------------------------
folder <- tempdir()
CDMConnector::downloadEunomiaData(overwrite = TRUE, pathToData = folder)
Sys.setenv("EUNOMIA_DATA_FOLDER" = folder)
## -----------------------------------------------------------------------------
library(duckdb)
library(CDMConnector)
library(PatientProfiles)
library(dplyr)
library(CodelistGenerator)
cdm <- cdmFromCon(
con = dbConnect(duckdb(), eunomia_dir()),
cdmSchema = "main",
writeSchema = "main"
)
cdm <- generateConceptCohortSet(
cdm = cdm,
conceptSet = list("sinusitis" = c(4294548, 4283893, 40481087, 257012)),
limit = "first",
name = "my_cohort"
)
cdm <- generateConceptCohortSet(
cdm = cdm,
conceptSet = getDrugIngredientCodes(cdm = cdm, name = c("morphine", "aspirin", "oxycodone")),
name = "drugs"
)
x <- cdm$my_cohort |>
# add demographics variables
addDemographics() |>
# add number of counts per ingredient before and after index date
addCohortIntersectCount(
targetCohortTable = "drugs",
window = list("prior" = c(-Inf, -1), "future" = c(1, Inf)),
nameStyle = "{window_name}_{cohort_name}"
) |>
# add a flag regarding if they had a prior occurrence of pharyngitis
addConceptIntersectFlag(
conceptSet = list(pharyngitis = 4112343),
window = c(-Inf, -1),
nameStyle = "pharyngitis_before"
) |>
# date fo the first visit for that individual
addTableIntersectDate(
tableName = "visit_occurrence",
window = c(-Inf, Inf),
nameStyle = "first_visit"
) |>
# time till the next visit after sinusitis
addTableIntersectDays(
tableName = "visit_occurrence",
window = c(1, Inf),
nameStyle = "days_to_next_visit"
)
x |>
glimpse()
## -----------------------------------------------------------------------------
x |>
group_by(sex) |>
summarise(mean_age = mean(age), sd_age = sd(age))
## -----------------------------------------------------------------------------
x |>
summariseResult(
strata = "sex",
variables = "age",
estimates = c("mean", "sd"),
counts = FALSE
) |>
select(strata_name, strata_level, variable_name, estimate_value)
## -----------------------------------------------------------------------------
x |>
summariseResult(
strata = list("sex", "pharyngitis_before"),
variables = "age",
estimates = c("mean", "sd"),
counts = FALSE
) |>
select(strata_name, strata_level, variable_name, estimate_value)
## -----------------------------------------------------------------------------
x |>
summariseResult(
strata = list("sex", "pharyngitis_before", c("sex", "pharyngitis_before")),
variables = "age",
estimates = c("mean", "sd"),
counts = FALSE
) |>
select(strata_name, strata_level, variable_name, estimate_value) |>
print(n = Inf)
## -----------------------------------------------------------------------------
x |>
summariseResult(
includeOverallStrata = FALSE,
strata = list("sex", "pharyngitis_before"),
variables = "age",
estimates = c("mean", "sd"),
counts = FALSE
) |>
select(strata_name, strata_level, variable_name, estimate_value) |>
print(n = Inf)
## -----------------------------------------------------------------------------
x |>
addCohortName() |>
summariseResult(
group = "cohort_name",
includeOverallGroup = FALSE,
strata = list("sex", "pharyngitis_before"),
includeOverallStrata = TRUE,
variables = "age",
estimates = c("mean", "sd"),
counts = FALSE
) |>
select(group_name, group_level, strata_name, strata_level, variable_name, estimate_value) |>
print(n = Inf)
## -----------------------------------------------------------------------------
x |>
summariseResult(
variables = "age",
estimates = c("mean", "sd"),
counts = TRUE
) |>
select(strata_name, strata_level, variable_name, estimate_value) |>
print(n = Inf)
## -----------------------------------------------------------------------------
x |>
summariseResult(
strata = "pharyngitis_before",
includeOverallStrata = FALSE,
variables = list(c("age", "prior_observation"), "sex"),
estimates = list(c("mean", "sd"), c("count", "percentage")),
counts = FALSE
) |>
select(strata_name, strata_level, variable_name, estimate_value) |>
print(n = Inf)
## -----------------------------------------------------------------------------
drugs <- settings(cdm$drugs)$cohort_name
x |>
addCohortName() |>
summariseResult(
group = "cohort_name",
includeOverallGroup = FALSE,
strata = list("pharyngitis_before"),
includeOverallStrata = TRUE,
variables = list(
c(
"age", "prior_observation", "future_observation", paste0("prior_", drugs),
paste0("future_", drugs), "days_to_next_visit"
),
c("sex", "pharyngitis_before"),
c("first_visit", "cohort_start_date", "cohort_end_date")
),
estimates = list(
c("median", "q25", "q75"),
c("count", "percentage"),
c("median", "q25", "q75", "min", "max")
),
counts = TRUE
) |>
select(group_name, group_level, strata_name, strata_level, variable_name, estimate_value)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.