Nothing
#Class implementing an Association Rules Algorithm
#Implements the MODENAR_A KEEL association rules algorithm
#Author: Oliver Sanchez
MODENAR_A <- function(dat, seed=1286082570,PopulationSize=100,NumberofEvaluations=50000,CrossoverrateCR=0.3,Thresholdforthenumberofnondominatedsolutions=60,Thefactorofamplitudeforeachattributeofthedataset=2,WeightforSupport=0.8,WeightforConfidence=0.2,WeightforComprehensibility=0.1,WeightforAmplitudeoftheIntervals=0.4){
alg <- RKEEL::R6_MODENAR_A$new()
alg$setParameters(dat,seed,PopulationSize,NumberofEvaluations,CrossoverrateCR,Thresholdforthenumberofnondominatedsolutions,Thefactorofamplitudeforeachattributeofthedataset,WeightforSupport,WeightforConfidence,WeightforComprehensibility,WeightforAmplitudeoftheIntervals)
return (alg)
}
R6_MODENAR_A <- R6::R6Class("R6_MODENAR_A",
inherit = AssociationRulesAlgorithm,
public = list(
#Public properties
#pruned
#pruned = TRUE,
#confidence
#confidence = 0.25,
#instances per leaf
#instancesPerLeaf = 2,
seed = 1286082570,
PopulationSize=100,
NumberofEvaluations=50000,
CrossoverrateCR=0.3,
Thresholdforthenumberofnondominatedsolutions=60,
Thefactorofamplitudeforeachattributeofthedataset=2,
WeightforSupport=0.8,
WeightforConfidence=0.2,
WeightforComprehensibility=0.1,
WeightforAmplitudeoftheIntervals=0.4,
#Public functions
#Initialize function
setParameters = function(dat, seed=1286082570,PopulationSize=100,NumberofEvaluations=50000,CrossoverrateCR=0.3,Thresholdforthenumberofnondominatedsolutions=60,Thefactorofamplitudeforeachattributeofthedataset=2,WeightforSupport=0.8,WeightforConfidence=0.2,WeightforComprehensibility=0.1,WeightforAmplitudeoftheIntervals=0.4){
super$setParameters(dat)
self$seed <- seed
self$PopulationSize <- PopulationSize
self$NumberofEvaluations <- NumberofEvaluations
self$CrossoverrateCR <- CrossoverrateCR
self$Thresholdforthenumberofnondominatedsolutions <- Thresholdforthenumberofnondominatedsolutions
self$Thefactorofamplitudeforeachattributeofthedataset <- Thefactorofamplitudeforeachattributeofthedataset
self$WeightforSupport <- WeightforSupport
self$WeightforConfidence <- WeightforConfidence
self$WeightforComprehensibility <- WeightforComprehensibility
self$WeightforAmplitudeoftheIntervals <- WeightforAmplitudeoftheIntervals
}
),
private = list(
#Private properties
#jar Filename
jarName = "MODENAR.jar",
#algorithm name
algorithmName = "MODENAR_A",
#String with algorithm name
algorithmString = "MODENAR_A",
algorithmOutputNumTxt = 1,
#Private functions
#Get the text with the parameters for the config file
getParametersText = function(){
text <- ""
text <- paste0(text, "seed = ", self$seed, "\n")
text <- paste0(text, "Population Size = ", self$PopulationSize, "\n")
text <- paste0(text, "Number of Evaluations = ", self$NumberofEvaluations, "\n")
text <- paste0(text, "Crossover rate (CR) = ", self$CrossoverrateCR, "\n")
text <- paste0(text, "Threshold for the number of non-dominated solutions = ", self$Thresholdforthenumberofnondominatedsolutions, "\n")
text <- paste0(text, "The factor of amplitude for each attribute of the dataset = ", self$Thefactorofamplitudeforeachattributeofthedataset, "\n")
text <- paste0(text, "Weight for Support = ", self$WeightforSupport, "\n")
text <- paste0(text, "Weight for Confidence = ", self$WeightforConfidence, "\n")
text <- paste0(text, "Weight for Comprehensibility = ", self$WeightforComprehensibility, "\n")
text <- paste0(text, "Weight for Amplitude of the Intervals = ", self$WeightforAmplitudeoftheIntervals, "\n")
return(text)
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.