View source: R/correctDilinterc.R
correctDilinterc | R Documentation |
Consists of 3 functions: getIntercepts()
, analyzeIntercepts()
and getSignals()
.
The first one derives intercepts of dilution series in dependence of dilSeriesID (column in sampledescription.txt) and slide/pad/incubationRun/spottingRun number (colnames of arraydescription). A smoothing spline is used to extrapolate to 0. Nonparametric bootstrap is used to estimate uncertainty of the intercept estimate.
The second function is used in the last one and does Analysis of Variances for nested models.
The last one updates the original timeseries signal to (foreground expression - intercept).
correctDilinterc(dilseries, arraydesc, timeseries, exportNo)
getIntercepts(dilseries, arraydesc)
analyzeIntercepts(intercepts, test="F", export)
getSignals(timeseries, intercepts, arraydesc, exportNo)
as.my(v)
dilseries |
foreground signal matrix as result of |
arraydesc |
"arraydescription" matrix of the RPPA data set list |
timeseries |
foreground signal matrix as result of |
exportNo |
integer of 1-4 which of the linear fits should be exported to the attribute of the result, variable for |
intercepts |
output of |
test |
test parameter for ANOVA (see documentation of |
export |
see |
v |
some variable |
matrix with adapted signal intensities via subtraction of dilution intercept at concentration 0
Daniel Kaschek, Silvia von der Heyde
## Not run:
library(RPPanalyzer)
# read data
dataDir <- system.file("extdata", package="RPPanalyzer")
setwd(dataDir)
rawdata <- read.Data(blocksperarray=12, spotter="aushon", printFlags=FALSE)
# write data
write.Data(rawdata,FileNameExtension="test_data")
# import raw data
fgRaw.tmp <- read.delim("test_dataexpression.txt",
stringsAsFactors=FALSE, row.names=NULL, header=TRUE)
fgRaw <- read.delim("test_dataexpression.txt", skip=max(which(fgRaw.tmp[,1]==""))+1,
stringsAsFactors=FALSE, row.names=NULL, header=TRUE)
# remove NAs
fgNAVec <- which(is.na(fgRaw[,"ID"]))
if(length(fgNAVec) > 0){
fgRaw <- fgRaw[-fgNAVec,]
}
colnames(fgRaw) <- sub("X","", gsub("\\.","-", colnames(fgRaw)))
# correct data for BG noise
correctedData <- correctDilinterc(dilseries=fgRaw[which(fgRaw$sample_type=="control" &
!is.na(fgRaw$dilSeriesID)),], arraydesc=rawdata$arraydescription,
timeseries=fgRaw[which(fgRaw$sample_type=="measurement"),], exportNo=2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.