do.dagdne | R Documentation |
Doublue Adjacency Graphs-based Discriminant Neighborhood Embedding (DAG-DNE) is a variant of DNE. As its name suggests, it introduces two adjacency graphs for homogeneous and heterogeneous samples accordaing to their labels.
do.dagdne( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an (n\times p) matrix or data frame whose rows are observations. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
ding_double_2015Rdimtools
do.dne
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.dagdne(X, label, numk=5) out2 = do.dagdne(X, label, numk=10) out3 = do.dagdne(X, label, numk=20) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="nbd size=5", col=label, pch=19) plot(out2$Y, main="nbd size=10",col=label, pch=19) plot(out3$Y, main="nbd size=20",col=label, pch=19) par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.