| do.dagdne | R Documentation |
Doublue Adjacency Graphs-based Discriminant Neighborhood Embedding (DAG-DNE) is a variant of DNE. As its name suggests, it introduces two adjacency graphs for homogeneous and heterogeneous samples accordaing to their labels.
do.dagdne(
X,
label,
ndim = 2,
numk = max(ceiling(nrow(X)/10), 2),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
ding_double_2015Rdimtools
do.dne
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## try different numbers for neighborhood size
out1 = do.dagdne(X, label, numk=5)
out2 = do.dagdne(X, label, numk=10)
out3 = do.dagdne(X, label, numk=20)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, main="nbd size=5", col=label, pch=19)
plot(out2$Y, main="nbd size=10",col=label, pch=19)
plot(out3$Y, main="nbd size=20",col=label, pch=19)
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.