do.dne | R Documentation |
Discriminant Neighborhood Embedding (DNE) is a supervised subspace learning method. DNE tries to move multi-class data points in high-dimensional space in accordance with local intra-class attraction and inter-class repulsion.
do.dne( X, label, ndim = 2, numk = max(ceiling(nrow(X)/10), 2), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten") )
X |
an (n\times p) matrix or data frame whose rows are observations. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
numk |
the number of neighboring points for k-nn graph construction. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
zhang_discriminant_2006Rdimtools
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different numbers for neighborhood size out1 = do.dne(X, label, numk=5) out2 = do.dne(X, label, numk=10) out3 = do.dne(X, label, numk=20) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="DNE::nbd size=5", col=label, pch=19) plot(out2$Y, main="DNE::nbd size=10", col=label, pch=19) plot(out3$Y, main="DNE::nbd size=20", col=label, pch=19) par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.