do.dspp | R Documentation |
Discriminative Sparsity Preserving Projection (DSPP) is a supervised dimension reduction method that employs sparse representation model to adaptively build both intrinsic adjacency graph and penalty graph. It follows an integration of global within-class structure into manifold learning under exploiting discriminative nature provided from label information.
do.dspp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), lambda = 1, rho = 1 )
X |
an (n\times p) matrix or data frame whose rows are observations. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
lambda |
regularization parameter for constructing sparsely weighted network. |
rho |
a parameter for balancing the local and global contribution. |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
gao_discriminative_2015Rdimtools
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different rho values out1 <- do.dspp(X, label, ndim=2, rho=0.01) out2 <- do.dspp(X, label, ndim=2, rho=0.1) out3 <- do.dspp(X, label, ndim=2, rho=1) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, main="rho=0.01", col=label, pch=19) plot(out2$Y, main="rho=0.1", col=label, pch=19) plot(out3$Y, main="rho=1", col=label, pch=19) par(opar) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.