do.ica | R Documentation |
do.ica
is an R implementation of FastICA algorithm, which aims at
finding weight vectors that maximize a measure of non-Gaussianity of projected data.
FastICA is initiated with pre-whitening of the data. Single and multiple component
extraction are both supported. For more detailed information on ICA and FastICA algorithm,
see this Wikipedia page.
do.ica( X, ndim = 2, type = "logcosh", tpar = 1, sym = FALSE, tol = 1e-06, redundancy = TRUE, maxiter = 100 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
type |
nonquadratic function, one of |
tpar |
a numeric parameter for |
sym |
a logical value; |
tol |
stopping criterion for iterative update. |
redundancy |
a logical value; |
maxiter |
maximum number of iterations allowed.
|
In most of ICA literature, we have
S = X*W
where W is an unmixing matrix for
the given data X. In order to preserve consistency throughout our package, we changed
the notation; Y a projected matrix for S, and projection
for unmixing matrix W.
Kisung You
hyvarinen_independent_2001Rdimtools
## use iris dataset data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## 1. use logcosh function for transformation output1 <- do.ica(X,ndim=2,type="logcosh") ## 2. use exponential function for transformation output2 <- do.ica(X,ndim=2,type="exp") ## 3. use polynomial function for transformation output3 <- do.ica(X,ndim=2,type="poly") ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=lab, pch=19, main="ICA::logcosh") plot(output2$Y, col=lab, pch=19, main="ICA::exp") plot(output3$Y, col=lab, pch=19, main="ICA::poly") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.