| do.lmds | R Documentation |
Landmark MDS is a variant of Classical Multidimensional Scaling in that it first finds a low-dimensional embedding using a small portion of given dataset and graft the others in a manner to preserve as much pairwise distance from all the other data points to landmark points as possible.
do.lmds(X, ndim = 2, npoints = max(nrow(X)/5, ndim + 1))
X |
an |
ndim |
an integer-valued target dimension. |
npoints |
the number of landmark points to be drawn. |
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
silva_global_2002Rdimtools
\insertReflee_landmark_2009Rdimtools
do.mds
## use iris data
data(iris)
X = as.matrix(iris[,1:4])
lab = as.factor(iris[,5])
## use 10% and 25% of the data and compare with full MDS
output1 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.10))
output2 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.25))
output3 <- do.mds(X, ndim=2)
## vsualization
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(output1$Y, pch=19, col=lab, main="10% random points")
plot(output2$Y, pch=19, col=lab, main="25% random points")
plot(output3$Y, pch=19, col=lab, main="original MDS")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.