do.lmds | R Documentation |
Landmark MDS is a variant of Classical Multidimensional Scaling in that it first finds a low-dimensional embedding using a small portion of given dataset and graft the others in a manner to preserve as much pairwise distance from all the other data points to landmark points as possible.
do.lmds(X, ndim = 2, npoints = max(nrow(X)/5, ndim + 1))
X |
an (n\times p) matrix whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
npoints |
the number of landmark points to be drawn. |
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
silva_global_2002Rdimtools
\insertReflee_landmark_2009Rdimtools
do.mds
## use iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## use 10% and 25% of the data and compare with full MDS output1 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.10)) output2 <- do.lmds(X, ndim=2, npoints=round(nrow(X)*0.25)) output3 <- do.mds(X, ndim=2) ## vsualization opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=lab, main="10% random points") plot(output2$Y, pch=19, col=lab, main="25% random points") plot(output3$Y, pch=19, col=lab, main="original MDS") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.