do.lqmi | R Documentation |
Linear Quadratic Mutual Information (LQMI) is a supervised linear dimension reduction method. Quadratic Mutual Information is an efficient nonparametric estimation method for Mutual Information for class labels not requiring class priors. For the KQMI formulation, LQMI is a linear equivalent.
do.lqmi( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate") )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
bouzas_graph_2015Rdimtools
do.kqmi
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare against LDA out1 = do.lda(X, label) out2 = do.lqmi(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="LDA projection") plot(out2$Y, col=label, main="LQMI projection") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.