do.mds | R Documentation |
do.mds
performs a classical Multidimensional Scaling (MDS) using
Rcpp
and RcppArmadillo
package to achieve faster performance than
cmdscale
.
do.mds(X, ndim = 2, ...)
X |
an (n\times p) matrix whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
kruskal_multidimensional_1964Rdimtools
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## compare with PCA Rmds <- do.mds(X, ndim=2) Rpca <- do.pca(X, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(Rmds$Y, pch=19, col=lab, main="MDS") plot(Rpca$Y, pch=19, col=lab, main="PCA") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.