| do.mds | R Documentation |
do.mds performs a classical Multidimensional Scaling (MDS) using
Rcpp and RcppArmadillo package to achieve faster performance than
cmdscale.
do.mds(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
kruskal_multidimensional_1964Rdimtools
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## compare with PCA
Rmds <- do.mds(X, ndim=2)
Rpca <- do.pca(X, ndim=2)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(Rmds$Y, pch=19, col=lab, main="MDS")
plot(Rpca$Y, pch=19, col=lab, main="PCA")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.