do.mmsd | R Documentation |
Multiple Maximum Scatter Difference (MMSD) is a supervised linear dimension reduction method. It is a variant of MSD in that discriminant vectors are orthonormal. Similar to MSD, it also does not suffer from rank deficiency issue of scatter matrix.
do.mmsd( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), C = 1 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
C |
nonnegative balancing parameter for intra- and inter-class scatter. |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
fengxisong_multiple_2007Rdimtools
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-50 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different balancing parameter out1 = do.mmsd(X, label, C=0.01) out2 = do.mmsd(X, label, C=1) out3 = do.mmsd(X, label, C=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="MMSD::C=0.01") plot(out2$Y, pch=19, col=label, main="MMSD::C=1") plot(out3$Y, pch=19, col=label, main="MMSD::C=100") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.